As the originator of Full Non-indexical Conditioning (FNC), I’m curious why you think it favours panspermia over independent origin of life on Earth.
FNC favours theories that better explain what you know. We know that there is life on Earth, but we know very little about whether life originated on Earth, or came from elsewhere. We also know very little about whether life exists elsewhere, except that if it does, it hasn’t made its existence obvious to us.
Off hand, I don’t see how FNC says anything about the panspermia question. FNC should disfavour the “panspermia difficult, independent origin also difficult” possibility, since it makes our existence on Earth less likely (though it does make the non-obviousness of life elsewhere more likely, so the overall effect is unclear). But between “independent origin easy” and “independent origin hard, but panspermia easy”, FNC would seem to have no preference. Both make life on Earth reasonably likely, and both make lots of life elsewhere also seem likely (one then needs to separately explain why we haven’t already observed life elsewhere).
1.My experience will be the same in the planets with and without panspermia, as it is basically invisible for now.
2. If Universe is very large and slightly diverse, there are regions where panspermia is possible and regions where they are not—without any visible for us consequences.
3. (Assumptions) Abiogenesis is difficult, but potentially habitable planets are very numerous.
4. In the regions with pasnpermia, life will be disseminated from initial Edem to millions habitable planets in the Galaxy.
5. For every habitable planet in the non-panspermia region there will be million habitable planets in panseprmia-region.
6. As there is no observable differences between regions, for any my exact copy in non-panspermia region there will be million my copies in paspermia regions. (May be I am wrongly understand FNIC, but this is how I apply it.)
You’re forgetting the “non-indexical” part of FNC. With FNC, one finds conditional probabilities given that “someone has your exact memories”, not that “you have your exact memories”. The universe is assumed to be small enough that it is unlikely that there are two people with the same exact memories, so (by assumption) there are not millions of exact copies of you. (If that were true, there would likely be at least one (maybe many) copies of people with practically any set of memories, rendering FNC useless.)
If you assume that abiogenesis is difficult, then FNC does indeed favour panspermia, since it would make the existence of someone with your exact memories more likely. (Again, the non-observation of aliens may provide a counteracting inference.) But I don’t see any reason to think that abiogenesis is less (or more) difficult than panspermia, with our present state of knowledge.
Abiogenesis seems to depend on the random synthesis of a 100-pieces long stand of RNA capable to self-replicate. Chances of it on any given planet is like 10E-50.
Interstellar panspermia has much less variables, and we know that most of its ingredients are already in place: martian meteorites, interstellar comets. It may have like 0.01 initial probability.
Non-observation of aliens may be explained by the fact that a) either p(intelligence|life) is very small or b) we are the first of many nearby siblings and will meet them soon (local grabby aliens).
I think you’re overly-confident of the difficulty of abiogenesis, given our ignorance of the matter. For example, it could be that some simpler (easier to start) self-replicating system came first, with RNA then getting used as an enhancement to that system, and eventually replacing it—just as it’s currently thought that DNA (mostly) replaced RNA (as the inherited genetic material) after the RNA world developed.
Actually, it looks like from this that FNIC favors simpler ways of abiogenesis—as there will be more planets with life and more chances for me to appear.
As the originator of Full Non-indexical Conditioning (FNC), I’m curious why you think it favours panspermia over independent origin of life on Earth.
FNC favours theories that better explain what you know. We know that there is life on Earth, but we know very little about whether life originated on Earth, or came from elsewhere. We also know very little about whether life exists elsewhere, except that if it does, it hasn’t made its existence obvious to us.
Off hand, I don’t see how FNC says anything about the panspermia question. FNC should disfavour the “panspermia difficult, independent origin also difficult” possibility, since it makes our existence on Earth less likely (though it does make the non-obviousness of life elsewhere more likely, so the overall effect is unclear). But between “independent origin easy” and “independent origin hard, but panspermia easy”, FNC would seem to have no preference. Both make life on Earth reasonably likely, and both make lots of life elsewhere also seem likely (one then needs to separately explain why we haven’t already observed life elsewhere).
My reasoning is the following:
1.My experience will be the same in the planets with and without panspermia, as it is basically invisible for now.
2. If Universe is very large and slightly diverse, there are regions where panspermia is possible and regions where they are not—without any visible for us consequences.
3. (Assumptions) Abiogenesis is difficult, but potentially habitable planets are very numerous.
4. In the regions with pasnpermia, life will be disseminated from initial Edem to millions habitable planets in the Galaxy.
5. For every habitable planet in the non-panspermia region there will be million habitable planets in panseprmia-region.
6. As there is no observable differences between regions, for any my exact copy in non-panspermia region there will be million my copies in paspermia regions. (May be I am wrongly understand FNIC, but this is how I apply it.)
What do you think?
You’re forgetting the “non-indexical” part of FNC. With FNC, one finds conditional probabilities given that “someone has your exact memories”, not that “you have your exact memories”. The universe is assumed to be small enough that it is unlikely that there are two people with the same exact memories, so (by assumption) there are not millions of exact copies of you. (If that were true, there would likely be at least one (maybe many) copies of people with practically any set of memories, rendering FNC useless.)
If you assume that abiogenesis is difficult, then FNC does indeed favour panspermia, since it would make the existence of someone with your exact memories more likely. (Again, the non-observation of aliens may provide a counteracting inference.) But I don’t see any reason to think that abiogenesis is less (or more) difficult than panspermia, with our present state of knowledge.
Abiogenesis seems to depend on the random synthesis of a 100-pieces long stand of RNA capable to self-replicate. Chances of it on any given planet is like 10E-50.
Interstellar panspermia has much less variables, and we know that most of its ingredients are already in place: martian meteorites, interstellar comets. It may have like 0.01 initial probability.
Non-observation of aliens may be explained by the fact that a) either p(intelligence|life) is very small or b) we are the first of many nearby siblings and will meet them soon (local grabby aliens).
I think you’re overly-confident of the difficulty of abiogenesis, given our ignorance of the matter. For example, it could be that some simpler (easier to start) self-replicating system came first, with RNA then getting used as an enhancement to that system, and eventually replacing it—just as it’s currently thought that DNA (mostly) replaced RNA (as the inherited genetic material) after the RNA world developed.
Actually, it looks like from this that FNIC favors simpler ways of abiogenesis—as there will be more planets with life and more chances for me to appear.