Out of curiosity, what is the correct answer to the example Raven’s item? One of the answer candidates popped out to me immediately as the most likely one, and I’m interested to know whether that’s a sign of me having superior pattern recognition ability or whether a part of me just wants to believe that.
That’s interesting! I got the same answer but I visualized it differently. (Imagine, for each possible subpattern, i.e. “plus shape” or “dots”, considering which items it appears in. In each case the answer is four, forming a rectangle. Two of the rectangles should extend into the ninth item, the one we’re looking for.)
This is a better answer than XOR, in a sense: it describes the pattern more narrowly. If the “true pattern” were XOR, it would be possible to have a shape or subpattern occur 6 times (if it is missing once from each row and column, e.g. if it is present everywhere except in one of the diagonals). Since this does not occur for any of the six shapes, this provides some evidence that XOR is not the “true pattern”.
(Similarly, this is very strong evidence that “just have 4 of each shape” is not the true pattern: there are 126 ways to place a shape in 4 cells, and only 9 of them make a rectangle shape. The case against XOR, where we notice that only 9 of the 15 XOR patterns are used, is much weaker, but I still believe it.)
Of course, if the goal is to just solve this particular problem, then any method works. But if we were studying the appearance of many matrices with this pattern, then you would get twice as many research points as anyone else :)
The relationship between this approach and the XOR approach is interesting, I think. Thinking in XOR terms requires fancier mental infrastructure—you need to have seen something like the idea of XOR before, and to be able to notice slightly subtle relationships between different parts of the figure. On the other hand, spotting that particular features tend to occur in rectangles involves spotting simpler things but paying more global attention to the whole figure.
It feels like these play to different aspects of cognitive ability; spotting complicated patterns versus spotting large ones, so to speak. I guess the latter is closely related to working memory size, which I know is generally thought to be a large contributor to measured IQ. The former seems like an important aspect of intelligence too, and strikes me as more likely to be trainable than working memory size.
I did it even more simply than that: Count things. Most have four iterations. Some have three iterations. The ones with three, make four. Less than 10 seconds for me. Same answer as the rest of everyone.
This is how I did it. My first instinct was to decompose the problem into the shapes {dots, circles, diamonds, square, +, X} and then plot which cells the shapes appear in. It’s pretty easy to see the rectangles after that. Though, I didn’t make the connection to XOR.
That’s also interesting… I think the two ways of looking at it are equivalent, i.e. any pattern that satisfies one should also satisfy the other. (Only because the XOR pattern works both vertically and horizontally.)
The way I solved the problem hasn’t been mentioned here by anyone, which is slightly bugging me out.
The way I solved it was looking at the whole puzzle as a single picture. The two bottom rows (except for the middle column) have pluses. Thus the solution must have a plus. The two right columns (except for the middle row—a transposed pattern from the previous pattern) have squares; the solution must have a square. There’s only two answers with both a square and a plus; I picked the one that seemed most intuitively correct.
Similarly, I go the same answer, but only by process of elimination. I knew it didn’t have dots, I knew it didn’t have a diamond, I knew it didn’t have an x, by just extrapolating from the “cut offs” in the problem. That left me with 2, but it felt...wrong. It didn’t feel intuitively right. If I had to pick on without thinking about it, number 2′s the last one I’d pick.
I only understand the pattern in a cohesive way from looking at the comments. Now it makes sense, instead of being deduced from bits of dis-unified information.
Possibly of interest: I worked out the correct answer in a minute or so, but wasn’t sure it was correct until I identified it as an exclusive or pattern, which I didn’t figure out until after I had the answer.
I note that the missing piece fits a xor pattern both across and down. I’m trying to figure out if that has to happen—that is, if the first two rows are xor across, and the first two columns are xor down, and the missing piece fits xor in at least one direction, is it required to also fit xor in the other direction?
I’m trying to figure out if that has to happen—that is, if the first two rows are xor across, and the first two columns are xor down, and the missing piece fits xor in at least one direction, is it required to also fit xor in the other direction?
That is:
A⊕B=C (1)
D⊕E=F (2)
G⊕H=I (3)
and
A⊕D=G (4)
B⊕E=H (5)
We want to know if it is true that:
C⊕F=I
We begin with our goal, and substitute out C and F using (1) and (2):
(A⊕B)⊕(D⊕E)=I
Now we ask Wikipedia if ⊕ is associative and commutative, and the answer is yes, allowing us to rearrange that as (this is actually multiple steps, condensed):
(A⊕D)⊕(B⊕E)=I
Now we substitute using (4) and (5):
G⊕H=I
This is (3), and thus we have our proof. (Perhaps a more natural way is to start at (3) and work forward to our desired formula, but I like working backwards.)
As a side point, I believe it is the case that most (all?) Raven’s patterns are applied both horizontally and vertically.
I think the proof is simplified by the observation that (+ meaning XOR) a+b=c is the same as a+b+c=0. So if all rows have the XOR property, we find that the XOR of all entries is 0. If two columns have the XOR property, the XOR of their entries is 0, leaving 0 for the XOR of the entries in the last column, and we’re done.
As a side point, I believe it is the case that most (all?) Raven’s patterns are applied both horizontally and vertically.
The actual Advanced Progressive Matrices test isn’t in the public domain, but the most difficult items on clones are sometimes not “what comes next?” type items at all, but instead involve picking an item that completes the pattern in a broader sense. For example, I came across one where the pattern can only be seen by identifying opposite edges and viewing the grid as a torus.
For example, I came across one where the pattern can only be seen by identifying opposite edges and viewing the grid as a torus.
If you mean what I think you mean by a torus, that will maintain the vertical and horizontal symmetry. The claim I am confident in is that I don’t think any Raven’s test has two potential answers, one of which is more sensible if you perceive the pattern horizontally and another of which is more sensible if you perceive the pattern vertically. I am not sure whether that is accomplished by there being two equally reasonably concluding items, one of which is not included in the potential answer set, or by there never being two equally reasonable concluding items in the set of all possible items.
The weaker claim, that is mostly speculation, is that the description of the pattern is the same both ways. For example, consider this possibility:
1 0 1
1 0 1
1 0 ?
The answer is obviously 1, but is it because it’s an xor, adding, or multiplication? The first two work horizontally but not vertically, and the latter only works vertically. I don’t think there are many (any?) test patterns that look like that.
I’m pretty sure it’s 2 (same as Vaniver, gwillen, and Alicorn). Was that what popped out at you?
It didn’t take me less than 10 seconds to come up with this (I’d be surprised if it was less than 20 or more than 40 to find it and check, but I didn’t check the clock). I tried to figure out the pattern without priming by looking at the possible answers, so there wasn’t even really a chance to have the right answer pop out in this fashion.
ETA: I have taken Raven’s Matrices before, so I was ready.
Nope: I got the fourth one. Guess it was just my brain playing tricks at me, then. :)
(I tried to do it using basically just unthinking pattern recognition, looking at the sequence of patterns as a sequence of movement: somehow, using that criteria, the fourth one seemed to display “the most similar kind of motion” as compared to the above examples, even though a more conscious analysis suggested that it seemed to be breaking some of the rules of the above sequences, and I couldn’t come up with any verbal summary of the rule. But it still just felt so right somehow.)
I, too, tend towards mentally overlaying the tiles and looking for movement-patterns as I jump from one tile to another.
In this case, I saw the middle row as a flash of “fire” that burned away some of the first row, and what remained was the content of the third row. (And it worked with columns too, which is how I knew that this was the correct visualization).
I couldn’t come up with any verbal summary of the rule. But it still just felt so right somehow.)
Psychologists make a distinction between that sort of fuzzy similarity judgement and rule-based analytical reasoning (and the social/cultural factors that predispose people to one or the other). They’re both valid ways to think about things in different contexts, but Raven’s matrices are definitely rule based and you should probably avoid fuzzy holistic reasoning when trying to solve them correctly.
(In the flower example, one is the holistic grouping and the other is the rule-based grouping)
I got the same answer in a third way. Gur ynfg vgrz va n ebj vf znqr sebz rirelguvat va gur svefg gjb cynprf, rkprcg gung juvpu gurl unir va pbzzba. EDIT: There’s a simpler name for what I did: KBE, ubevmbagnyyl.
Oh, good. I got this too. With XOR. Contrary to other repliers, it seems to me like XOR is a simpler primitive than “the presence/absence of shapes forms a rectangle”. It’s more easily generalizable and doesn’t rely on the existence of other patterns. As a cute curiosity, by the way, the XOR-ing works both vertically and horizontally.
I did it with horizontal XOR, and I didn’t notice the vertical XOR or the rectangles (which, if you think about it, are a consequence of the two XORs) until I read the comments.
The rectangle pattern is more complicated than the horizontal XOR pattern. But the rectangle pattern is the full pattern and the horizontal XOR isn’t. The full pattern is the combination of both horizontal and vertical XOR patterns. You can get the answer without seeing the full pattern, just seeing the horizontal XOR pattern. The full pattern, either in rectangle form or both XORs doesn’t help you get the answer, but it is useful check.
I’ve never had the experience of thinking that a saw the pattern and being wrong.
Most Less Wrong readers’ performance on Raven’s Matrices would be between 2 SD and 3 SD above the mean, and I’d guess that the threshold for seeing the pattern in this particular item is in the same range. Rapidity with which one sees the answer probably gives incremental predictive power, but I’d guess that the improvement in predictive power would be much less than the improvement coming from testing untimed performance on more difficult items.
Most Less Wrong readers’ performance on Raven’s Matrices would be between 2 SD and 3 SD above the mean
We asked people to take a Raven’s Matrices IQ test on previous surveys, like the 2012 survey. According to one of my old comments, LWers with positive karma averaged 127 on the test, somewhat below 2 SDs above the mean. I suspect that’s inflated by nonresponse.
There were questions about whether or not the Raven’s was a good IQ test to be using, as many people thought the version hosted on iqtest.dk underestimated their IQ, and it was not included on later surveys.
I’m pretty sure that the the issue is with the conversion between performance on the iqtest.dk test and score. My best guess is that they’re determining percentiles relative to other test takers, and that people who spend time taking IQ tests online are unrepresentatively high IQ.
My best guess is that they’re determining percentiles relative to other test takers, and that people who spend time taking IQ tests online are unrepresentatively high IQ.
I think this is likely; I seem to recall iqtest.dk saying something to that effect. Given the various reporting biases involved, though, I’m unwilling to jump immediately to that as a conclusion. I recall the Raven’s numbers being lower than what you would expect given the SAT numbers, but being closer to the SAT numbers than the self-reported IQ numbers, which were higher than you would expect from the SAT numbers.
That is, even if I agree with your prior that LWers do better on Raven’s than on other tests, observing LWers doing worse on a Raven’s test than other tests should reduce my confidence in that, rather than me just using the prior to adjust the evidence to agree with it. (Administering a properly normed test, of course, would screen off the improperly normed test.)
I got the answer in under 2 minutes (didn’t time it exactly). However, when I first identified my answer candidate (answer 2), it was probably about two thirds of the way in. I got the correct answer by going across at first, but then spent additional time double checking my work using columns, and then double checking my answer before “committing”.
I’ve taken a couple of online Raven’s Matrices type tests in the past, but that was a while ago, so I don’t believe memory played too much of a role. However, I seem to have internalized the idea that IQ tests are trying to bait you with obvious answers, and as a result, I end up taking too long double checking my work.
I suppose the only way to get over this lack of confidence in my intuition is with practice, but I’m wary of diluting the feedback I get from the occasional IQ test due to the ‘practice effect’.
It’s a bit of a catch-22. Any thoughts would be appreciated.
The replies to my query suggest a bit of concern that I’m be placing too much value on IQ tests, which to be honest is not quite true. I’ve never actually taken a formal IQ test and don’t actually know my IQ score. It’s really not a big concern to me, though I do believe I’m smarter than average, but then again, most people think that too.
However, to answer your question,it’s just my personality—I like to optimize stuff. It doesn’t matter what it is, if I recognize that there’s a slightly more efficient way to do something, I want to learn it and do it better. It can be as simple as someone throwing a crumbled paper into a recycling bin from a few feet away, if I notice someone is able to do that slightly more efficiently than the way I’m doing it and with better results, then I get really curious and determined to figure out how to optimize my own shots.
So, along that same thread, I noticed inefficiencies in my IQ test taking skills (as I outlined in my original question), which prompted me to query you guys for any tips for improvement.
And in response to shminux and Ilya’s concerns, this personality trait of mine is actually quite healthy and a valued asset, it’s the reason why I did well academically and am doing well in my career, so nothing to worry about!
So, along that same thread, I noticed inefficiencies in my IQ test taking skills (as I outlined in my original question), which prompted me to query you guys for any tips for improvement.
… but a key point of my post is that context-free abstract pattern recognition ability is innate and can’t be learned :-). You can learn how to answer standard Raven’s matrices type questions, by learning patterns used to construct the items, but the skills built aren’t transferable – if given a different kind of test of context-free abstract pattern recognition ability, you would do no better than you would now. It is possible to improve a great deal as a mathematical thinker, but trying to build this sort of skill is not the way to do it.
“Context-free abstract pattern recognition” can be partially resolved into more legible subcomponents, some of which can be learned, and some of which can’t.
So working memory is one such component, and is often theorized as a big pathway for (intuitively defined) general human intelligence. It doesn’t look you can train working memory in a way that generalizes to increased performance on all tasks that involve working memory (although there’s some controversy about this). And as with other traits, increased performance on formal measurements of working memory might not translate to the real-world outcomes associated with higher untrained working memory.
At the same time, it seems that the universe must come packaged with a distribution over patterns, and so learning a few common patterns might transfer fairly well. The Raven pattern is XOR, a basic boolean function. The continued fraction is self-similarity, which is an interesting pattern (meta-pattern?), because while people already recognize trivial self-similarity (invariance, repetition), it look like people can be successfully taught to look for more complicated recurrences in math and CS classes.
I appreciate your response, but I think you’re forgetting my original question.
I got the answer in under 2 minutes (didn’t time it exactly). However, when I first identified my answer candidate (answer 2), it was probably about two thirds of the way in. I got the correct answer by going across at first, but then spent additional time double checking my work using columns, and then double checking my answer before “committing”.
I got the answer correctly and in under 2 minutes. I saw the pattern relatively effortlessly, but was only inquiring as to how to optimize the speed by fixing my “hesitation” to commit to the answer until I’ve double-checked it and ruled out any bait answers as well.
Not buying anything, just trying to satisfy my desire to optimize any skill I have (Raven’s matrices, crumbled paper basketball, driving, how to hold a pen, or any other skill).
See my previous answers to JonahSinick for more details.
Echoing Ilya here. IQ tests are a rough guide of what’s possible to achieve, not a predictor of success and satisfaction in life. Like height is a rough guide of what’s possible to achieve in basketball. If you are 5′10″, NBA is probably not for you. If your IQ tests keep returning under 120, you will probably not be an MIT prof. Unless you have some exceptional abilities not captured by these simple tests. Find something at you enjoy doing AND are very good at, and work on it. It’ll pay.
Out of curiosity, what is the correct answer to the example Raven’s item? One of the answer candidates popped out to me immediately as the most likely one, and I’m interested to know whether that’s a sign of me having superior pattern recognition ability or whether a part of me just wants to believe that.
The most plausible pattern for that one is exclusive or; an element is only in the third item if it is in exactly one of the preceding two items.
That’s interesting! I got the same answer but I visualized it differently. (Imagine, for each possible subpattern, i.e. “plus shape” or “dots”, considering which items it appears in. In each case the answer is four, forming a rectangle. Two of the rectangles should extend into the ninth item, the one we’re looking for.)
This is a better answer than XOR, in a sense: it describes the pattern more narrowly. If the “true pattern” were XOR, it would be possible to have a shape or subpattern occur 6 times (if it is missing once from each row and column, e.g. if it is present everywhere except in one of the diagonals). Since this does not occur for any of the six shapes, this provides some evidence that XOR is not the “true pattern”.
(Similarly, this is very strong evidence that “just have 4 of each shape” is not the true pattern: there are 126 ways to place a shape in 4 cells, and only 9 of them make a rectangle shape. The case against XOR, where we notice that only 9 of the 15 XOR patterns are used, is much weaker, but I still believe it.)
Of course, if the goal is to just solve this particular problem, then any method works. But if we were studying the appearance of many matrices with this pattern, then you would get twice as many research points as anyone else :)
The relationship between this approach and the XOR approach is interesting, I think. Thinking in XOR terms requires fancier mental infrastructure—you need to have seen something like the idea of XOR before, and to be able to notice slightly subtle relationships between different parts of the figure. On the other hand, spotting that particular features tend to occur in rectangles involves spotting simpler things but paying more global attention to the whole figure.
It feels like these play to different aspects of cognitive ability; spotting complicated patterns versus spotting large ones, so to speak. I guess the latter is closely related to working memory size, which I know is generally thought to be a large contributor to measured IQ. The former seems like an important aspect of intelligence too, and strikes me as more likely to be trainable than working memory size.
(I did it with XOR.)
I did it even more simply than that: Count things. Most have four iterations. Some have three iterations. The ones with three, make four. Less than 10 seconds for me. Same answer as the rest of everyone.
I did it this way too. I can’t help feeling like the xor way is smarter.
This is how I did it. My first instinct was to decompose the problem into the shapes {dots, circles, diamonds, square, +, X} and then plot which cells the shapes appear in. It’s pretty easy to see the rectangles after that. Though, I didn’t make the connection to XOR.
That’s also interesting… I think the two ways of looking at it are equivalent, i.e. any pattern that satisfies one should also satisfy the other. (Only because the XOR pattern works both vertically and horizontally.)
The way I solved the problem hasn’t been mentioned here by anyone, which is slightly bugging me out.
The way I solved it was looking at the whole puzzle as a single picture. The two bottom rows (except for the middle column) have pluses. Thus the solution must have a plus. The two right columns (except for the middle row—a transposed pattern from the previous pattern) have squares; the solution must have a square. There’s only two answers with both a square and a plus; I picked the one that seemed most intuitively correct.
Similarly, I go the same answer, but only by process of elimination. I knew it didn’t have dots, I knew it didn’t have a diamond, I knew it didn’t have an x, by just extrapolating from the “cut offs” in the problem. That left me with 2, but it felt...wrong. It didn’t feel intuitively right. If I had to pick on without thinking about it, number 2′s the last one I’d pick.
I only understand the pattern in a cohesive way from looking at the comments. Now it makes sense, instead of being deduced from bits of dis-unified information.
Do I know my IQ now?
I got the four, but not the rectangle—I just noticed that two elements only appeared three times.
Also how I did it. FWIW I know it took me more than a minute, but definitely less than five.
I thought about the pattern completely differently: every element is present in a 2x2 subarray.
Possibly of interest: I worked out the correct answer in a minute or so, but wasn’t sure it was correct until I identified it as an exclusive or pattern, which I didn’t figure out until after I had the answer.
I note that the missing piece fits a xor pattern both across and down. I’m trying to figure out if that has to happen—that is, if the first two rows are xor across, and the first two columns are xor down, and the missing piece fits xor in at least one direction, is it required to also fit xor in the other direction?
That is:
and
We want to know if it is true that:
We begin with our goal, and substitute out C and F using (1) and (2):
Now we ask Wikipedia if ⊕ is associative and commutative, and the answer is yes, allowing us to rearrange that as (this is actually multiple steps, condensed):
Now we substitute using (4) and (5):
This is (3), and thus we have our proof. (Perhaps a more natural way is to start at (3) and work forward to our desired formula, but I like working backwards.)
As a side point, I believe it is the case that most (all?) Raven’s patterns are applied both horizontally and vertically.
I think the proof is simplified by the observation that (+ meaning XOR) a+b=c is the same as a+b+c=0. So if all rows have the XOR property, we find that the XOR of all entries is 0. If two columns have the XOR property, the XOR of their entries is 0, leaving 0 for the XOR of the entries in the last column, and we’re done.
Agreed; my proof doesn’t make use of the fact that C⊕C=0, and if you use that fact you get there quicker.
The actual Advanced Progressive Matrices test isn’t in the public domain, but the most difficult items on clones are sometimes not “what comes next?” type items at all, but instead involve picking an item that completes the pattern in a broader sense. For example, I came across one where the pattern can only be seen by identifying opposite edges and viewing the grid as a torus.
If you mean what I think you mean by a torus, that will maintain the vertical and horizontal symmetry. The claim I am confident in is that I don’t think any Raven’s test has two potential answers, one of which is more sensible if you perceive the pattern horizontally and another of which is more sensible if you perceive the pattern vertically. I am not sure whether that is accomplished by there being two equally reasonably concluding items, one of which is not included in the potential answer set, or by there never being two equally reasonable concluding items in the set of all possible items.
The weaker claim, that is mostly speculation, is that the description of the pattern is the same both ways. For example, consider this possibility:
The answer is obviously 1, but is it because it’s an xor, adding, or multiplication? The first two work horizontally but not vertically, and the latter only works vertically. I don’t think there are many (any?) test patterns that look like that.
Yep, I also got this.
I’m pretty sure it’s 2 (same as Vaniver, gwillen, and Alicorn). Was that what popped out at you?
It didn’t take me less than 10 seconds to come up with this (I’d be surprised if it was less than 20 or more than 40 to find it and check, but I didn’t check the clock). I tried to figure out the pattern without priming by looking at the possible answers, so there wasn’t even really a chance to have the right answer pop out in this fashion.
ETA: I have taken Raven’s Matrices before, so I was ready.
Nope: I got the fourth one. Guess it was just my brain playing tricks at me, then. :)
(I tried to do it using basically just unthinking pattern recognition, looking at the sequence of patterns as a sequence of movement: somehow, using that criteria, the fourth one seemed to display “the most similar kind of motion” as compared to the above examples, even though a more conscious analysis suggested that it seemed to be breaking some of the rules of the above sequences, and I couldn’t come up with any verbal summary of the rule. But it still just felt so right somehow.)
I, too, tend towards mentally overlaying the tiles and looking for movement-patterns as I jump from one tile to another.
In this case, I saw the middle row as a flash of “fire” that burned away some of the first row, and what remained was the content of the third row. (And it worked with columns too, which is how I knew that this was the correct visualization).
What do you think about this? http://www.pnas.org/content/100/19/11163/F2.medium.gif
Psychologists make a distinction between that sort of fuzzy similarity judgement and rule-based analytical reasoning (and the social/cultural factors that predispose people to one or the other). They’re both valid ways to think about things in different contexts, but Raven’s matrices are definitely rule based and you should probably avoid fuzzy holistic reasoning when trying to solve them correctly.
(In the flower example, one is the holistic grouping and the other is the rule-based grouping)
I got 6 as the answer, basing it on 1. presence of inner circle 2. outer box apparently following a pattern.
But there’s a high chance i’m privileging my observations.
You could also do a row-wise XOR on every feature and get 2. Which for me seemed like a pretty obvious solution to me so I went with it.
V guvax vg’f ahzore gjb. Va rnpu pbyhza, gur funcr ba gbc trgf pebffcvrprf nqqrq naq vgf pbearef erzbirq, gura unf gur pbearef erghearq, xrrcf gur pebffcvrprf, naq ybfrf vgf zvqqyr.
Huh. I got the same answer, but a different way.
Rnpu vgrz vf znqr hc bs gur cerfrapr be nofrapr bs bar bs fvk onfvp ryrzragf. Rnpu ryrzrag nccrnef sbhe gvzrf, rkprcg gubfr gjb.
I got the same answer in a third way.
Gur ynfg vgrz va n ebj vf znqr sebz rirelguvat va gur svefg gjb cynprf, rkprcg gung juvpu gurl unir va pbzzba.
EDIT: There’s a simpler name for what I did: KBE, ubevmbagnyyl.
What code or syntax is this?
It’s rot-13.
Oh, good. I got this too. With XOR. Contrary to other repliers, it seems to me like XOR is a simpler primitive than “the presence/absence of shapes forms a rectangle”. It’s more easily generalizable and doesn’t rely on the existence of other patterns. As a cute curiosity, by the way, the XOR-ing works both vertically and horizontally.
I did it with horizontal XOR, and I didn’t notice the vertical XOR or the rectangles (which, if you think about it, are a consequence of the two XORs) until I read the comments.
The rectangle pattern is more complicated than the horizontal XOR pattern. But the rectangle pattern is the full pattern and the horizontal XOR isn’t. The full pattern is the combination of both horizontal and vertical XOR patterns. You can get the answer without seeing the full pattern, just seeing the horizontal XOR pattern. The full pattern, either in rectangle form or both XORs doesn’t help you get the answer, but it is useful check.
I’ve never had the experience of thinking that a saw the pattern and being wrong.
Most Less Wrong readers’ performance on Raven’s Matrices would be between 2 SD and 3 SD above the mean, and I’d guess that the threshold for seeing the pattern in this particular item is in the same range. Rapidity with which one sees the answer probably gives incremental predictive power, but I’d guess that the improvement in predictive power would be much less than the improvement coming from testing untimed performance on more difficult items.
We asked people to take a Raven’s Matrices IQ test on previous surveys, like the 2012 survey. According to one of my old comments, LWers with positive karma averaged 127 on the test, somewhat below 2 SDs above the mean. I suspect that’s inflated by nonresponse.
There were questions about whether or not the Raven’s was a good IQ test to be using, as many people thought the version hosted on iqtest.dk underestimated their IQ, and it was not included on later surveys.
I’m pretty sure that the the issue is with the conversion between performance on the iqtest.dk test and score. My best guess is that they’re determining percentiles relative to other test takers, and that people who spend time taking IQ tests online are unrepresentatively high IQ.
I think this is likely; I seem to recall iqtest.dk saying something to that effect. Given the various reporting biases involved, though, I’m unwilling to jump immediately to that as a conclusion. I recall the Raven’s numbers being lower than what you would expect given the SAT numbers, but being closer to the SAT numbers than the self-reported IQ numbers, which were higher than you would expect from the SAT numbers.
That is, even if I agree with your prior that LWers do better on Raven’s than on other tests, observing LWers doing worse on a Raven’s test than other tests should reduce my confidence in that, rather than me just using the prior to adjust the evidence to agree with it. (Administering a properly normed test, of course, would screen off the improperly normed test.)
I got the answer in under 2 minutes (didn’t time it exactly). However, when I first identified my answer candidate (answer 2), it was probably about two thirds of the way in. I got the correct answer by going across at first, but then spent additional time double checking my work using columns, and then double checking my answer before “committing”.
I’ve taken a couple of online Raven’s Matrices type tests in the past, but that was a while ago, so I don’t believe memory played too much of a role. However, I seem to have internalized the idea that IQ tests are trying to bait you with obvious answers, and as a result, I end up taking too long double checking my work.
I suppose the only way to get over this lack of confidence in my intuition is with practice, but I’m wary of diluting the feedback I get from the occasional IQ test due to the ‘practice effect’.
It’s a bit of a catch-22. Any thoughts would be appreciated.
Don’t worry about IQ tests, just learn stuff you like, or be more like people that inspire you.
What are your goals?
The replies to my query suggest a bit of concern that I’m be placing too much value on IQ tests, which to be honest is not quite true. I’ve never actually taken a formal IQ test and don’t actually know my IQ score. It’s really not a big concern to me, though I do believe I’m smarter than average, but then again, most people think that too.
However, to answer your question,it’s just my personality—I like to optimize stuff. It doesn’t matter what it is, if I recognize that there’s a slightly more efficient way to do something, I want to learn it and do it better. It can be as simple as someone throwing a crumbled paper into a recycling bin from a few feet away, if I notice someone is able to do that slightly more efficiently than the way I’m doing it and with better results, then I get really curious and determined to figure out how to optimize my own shots.
So, along that same thread, I noticed inefficiencies in my IQ test taking skills (as I outlined in my original question), which prompted me to query you guys for any tips for improvement.
And in response to shminux and Ilya’s concerns, this personality trait of mine is actually quite healthy and a valued asset, it’s the reason why I did well academically and am doing well in my career, so nothing to worry about!
… but a key point of my post is that context-free abstract pattern recognition ability is innate and can’t be learned :-). You can learn how to answer standard Raven’s matrices type questions, by learning patterns used to construct the items, but the skills built aren’t transferable – if given a different kind of test of context-free abstract pattern recognition ability, you would do no better than you would now. It is possible to improve a great deal as a mathematical thinker, but trying to build this sort of skill is not the way to do it.
“Context-free abstract pattern recognition” can be partially resolved into more legible subcomponents, some of which can be learned, and some of which can’t.
So working memory is one such component, and is often theorized as a big pathway for (intuitively defined) general human intelligence. It doesn’t look you can train working memory in a way that generalizes to increased performance on all tasks that involve working memory (although there’s some controversy about this). And as with other traits, increased performance on formal measurements of working memory might not translate to the real-world outcomes associated with higher untrained working memory.
At the same time, it seems that the universe must come packaged with a distribution over patterns, and so learning a few common patterns might transfer fairly well. The Raven pattern is XOR, a basic boolean function. The continued fraction is self-similarity, which is an interesting pattern (meta-pattern?), because while people already recognize trivial self-similarity (invariance, repetition), it look like people can be successfully taught to look for more complicated recurrences in math and CS classes.
I appreciate your response, but I think you’re forgetting my original question.
I got the answer correctly and in under 2 minutes. I saw the pattern relatively effortlessly, but was only inquiring as to how to optimize the speed by fixing my “hesitation” to commit to the answer until I’ve double-checked it and ruled out any bait answers as well.
What are you trying to buy yourself by getting better at Raven’s matrices?
Not buying anything, just trying to satisfy my desire to optimize any skill I have (Raven’s matrices, crumbled paper basketball, driving, how to hold a pen, or any other skill).
See my previous answers to JonahSinick for more details.
Echoing Ilya here. IQ tests are a rough guide of what’s possible to achieve, not a predictor of success and satisfaction in life. Like height is a rough guide of what’s possible to achieve in basketball. If you are 5′10″, NBA is probably not for you. If your IQ tests keep returning under 120, you will probably not be an MIT prof. Unless you have some exceptional abilities not captured by these simple tests. Find something at you enjoy doing AND are very good at, and work on it. It’ll pay.
See my response to JonahSinick below