I think a problem you would have is that the speed of information in the game is the same as the speed of, say, a glider. So an AI that is computing within Life would not be able to sense and react to a glider quickly enough to build a control structure in front of it.
Yeah this is true and is a very good point. Though consider that under our native physics, information in biological brains travels much more slowly than photons, too. Yet it is possible for structures in our native physics to make net measurements of large numbers of photons, use this information to accumulate knowledge about the environment, and use that knowledge to manipulate the environment, all without being able to build control structures in front of the massive number of photons bouncing around us.
Also, another bit of intuition: photons in our native physics will “knock over” most information-processing structures that we might build that are only one or two orders of magnitude larger than individual photons, such as tiny quantum computers constructed out of individual atoms, or tiny classical computers constructed out of transistors that are each just a handful of atoms. We don’t generally build such tiny structures in our universe because it’s actually harder for us, being embedded within our world, to build tiny structures than to build large structures. But when we consider building things in Life, we naturally start thinking at the microscopic scale, since we’re not starting with a bunch of already-understandable macroscopic building blocks like we are in our native physics.
The common glider moves at C/4. I don’t think there are any that are faster than that, but I’m pretty sure you can make “fuses” that can do a one-time relay at C/2 or maybe even C. You’d have to have an extremely sparse environment, though, to have time to rebuild your fuses.
I’m sceptical that you can make a wall against dense noise though. Maybe there are enough OOMs that you can have a large empty buffer to fill with ash and a wall beyond that?
The glider moves at c/4 diagonally, while the c/2 ships move horizontally. A c/2 ship moving right and then down will reach its destination at the same time the c/4 glider does. In fact, gliders travel at the empty space speed limit.
The weird thing is that there are two metrics involved: information can propagate through a nonempty universe at 1 cell per generation in the sense of the l_infinity metric, but it can only propagate into empty space at 1⁄2 a cell per generation in the sense of the l_1 metric.
I think a problem you would have is that the speed of information in the game is the same as the speed of, say, a glider. So an AI that is computing within Life would not be able to sense and react to a glider quickly enough to build a control structure in front of it.
Yeah this is true and is a very good point. Though consider that under our native physics, information in biological brains travels much more slowly than photons, too. Yet it is possible for structures in our native physics to make net measurements of large numbers of photons, use this information to accumulate knowledge about the environment, and use that knowledge to manipulate the environment, all without being able to build control structures in front of the massive number of photons bouncing around us.
Also, another bit of intuition: photons in our native physics will “knock over” most information-processing structures that we might build that are only one or two orders of magnitude larger than individual photons, such as tiny quantum computers constructed out of individual atoms, or tiny classical computers constructed out of transistors that are each just a handful of atoms. We don’t generally build such tiny structures in our universe because it’s actually harder for us, being embedded within our world, to build tiny structures than to build large structures. But when we consider building things in Life, we naturally start thinking at the microscopic scale, since we’re not starting with a bunch of already-understandable macroscopic building blocks like we are in our native physics.
The common glider moves at C/4. I don’t think there are any that are faster than that, but I’m pretty sure you can make “fuses” that can do a one-time relay at C/2 or maybe even C. You’d have to have an extremely sparse environment, though, to have time to rebuild your fuses.
I’m sceptical that you can make a wall against dense noise though. Maybe there are enough OOMs that you can have a large empty buffer to fill with ash and a wall beyond that?
There are C/2 spaceships, you don’t even need a fuse for that.
The glider moves at c/4 diagonally, while the c/2 ships move horizontally. A c/2 ship moving right and then down will reach its destination at the same time the c/4 glider does. In fact, gliders travel at the empty space speed limit.
Huh. Something about the way speed is calculated feels unintuitive to me, then.
The weird thing is that there are two metrics involved: information can propagate through a nonempty universe at 1 cell per generation in the sense of the l_infinity metric, but it can only propagate into empty space at 1⁄2 a cell per generation in the sense of the l_1 metric.
https://en.wikipedia.org/wiki/Norm_(mathematics)#p-norm