Thanks for the pointer to that paper, the abstract makes me think there’s a sort of slow-acting self-reinforcing feedback loop between predictive error minimisation via improving modelling and via improving the economy itself.
re: weather, I’m thinking of the chart below showing how little gain we get in MAE vs compute, plus my guess that compute can’t keep growing far enough to get MAE < 3 °F a year out (say). I don’t know anything about advancements in weather modelling methods though; maybe effective compute (incorporating modelling advancements) may grow indefinitely in terms of the chart.
I didn’t say anything about temperature prediction, and I’d also like to see any other method (intuition based or otherwise) do better than the current best mathematical models here. It seems unlikely to me that the trends in that graph will continue arbitrarily far.
Thanks for the pointer to that paper, the abstract makes me think there’s a sort of slow-acting self-reinforcing feedback loop between predictive error minimisation via improving modelling and via improving the economy itself.
Thanks for the pointer to that paper, the abstract makes me think there’s a sort of slow-acting self-reinforcing feedback loop between predictive error minimisation via improving modelling and via improving the economy itself.
re: weather, I’m thinking of the chart below showing how little gain we get in MAE vs compute, plus my guess that compute can’t keep growing far enough to get MAE < 3 °F a year out (say). I don’t know anything about advancements in weather modelling methods though; maybe effective compute (incorporating modelling advancements) may grow indefinitely in terms of the chart.
I didn’t say anything about temperature prediction, and I’d also like to see any other method (intuition based or otherwise) do better than the current best mathematical models here. It seems unlikely to me that the trends in that graph will continue arbitrarily far.
Yeah, that was my claim.