All the upvotes! I am something of an astrobiologist myself, although my emphasis is on geobiology and planetary geology. My current day job is to map out Martian sedimentary rocks with an eye towards liquid water distribution and ancient habitability. My graduate thesis was closer to home, a study of Paleoarchean microbialites.
If you think your posts would benefit from a bit of collaboration, don’t hesitate to ask. Otherwise, I’m eager to see what insights you have from a more astronomy-heavy and pure biology perspective.
A primary candidate for free energy in icy moons is thermal venting at the bottom of the liquid oceans; they do have rocky cores, after all. If Jupiter’s tidal forces can cause the volcanism on Io, then it’s reasonable to assume that they can also cause the rocky interior of Europa to produce volcanoes that vent heat and interesting ions in to the liquid water.
There’s also a surprising amount of electrolysis going on in the ice of Europa, because Jupiter has such a terrifying electrical field. I doubt that’s enough to sustain an ecosystem, but it’s enough for me to fantasize about giant upside-down forests of filter-feeders digging their roots upwards to get at the free oxygen.
The preliminary results we’re seeing on Pluto should also adjust your expectations in favor of ice-moon habitability; there, we see active tectonics on a Kuiper Belt Object even without the tidal forcing of a nearby planet. It seems that a giant pile of silicates and water ice provide a great deal of dynamism all on their own.