The core conceptual argument is: the higher your utility function can go, the bigger the world must be, and so the more bits it must take to describe it in its unoptimized state under M2, and so the more room there is to reduce the number of bits.
If you could only ever build 10 paperclips, then maybe it takes 100 bits to specify the unoptimized world, and 1 bit to specify the optimized world.
If you could build 10^100 paperclips, then the world must be humongous and it takes 10^101 bits to specify the unoptimized world, but still just 1 bit to specify the perfectly optimized world.
If you could build ∞ paperclips, then the world must be infinite, and it takes ∞ bits to specify the unoptimized world. Infinities are technically challenging, and John’s comment goes into more detail about how you deal with this sort of case.
For more intuition, notice that exp(x) is a bijective function from (-∞, ∞) to (0, ∞), so it goes from something unbounded on both sides to something unbounded on one side. That’s exactly what’s happening here, where utility is unbounded on both sides and gets mapped to something that is unbounded only on one side.
The core conceptual argument is: the higher your utility function can go, the bigger the world must be, and so the more bits it must take to describe it in its unoptimized state under M2, and so the more room there is to reduce the number of bits.
If you could only ever build 10 paperclips, then maybe it takes 100 bits to specify the unoptimized world, and 1 bit to specify the optimized world.
If you could build 10^100 paperclips, then the world must be humongous and it takes 10^101 bits to specify the unoptimized world, but still just 1 bit to specify the perfectly optimized world.
If you could build ∞ paperclips, then the world must be infinite, and it takes ∞ bits to specify the unoptimized world. Infinities are technically challenging, and John’s comment goes into more detail about how you deal with this sort of case.
For more intuition, notice that exp(x) is a bijective function from (-∞, ∞) to (0, ∞), so it goes from something unbounded on both sides to something unbounded on one side. That’s exactly what’s happening here, where utility is unbounded on both sides and gets mapped to something that is unbounded only on one side.
Ahh, thanks!