If we’re to believe the Philosophical Transactions of the Royal Society, or the Copenhagen Consensus Center, or apparently any of the individual geoengineering researchers who’ve modelled it, it’s possible to halt all warming by building a fleet of autonomous wind-powered platforms that do nothing more sinister than spraying seawater into the air, in a place no more ecologically sensitive than the open ocean, and for no greater cost than 10 billion USD
(edit: I’m not sure where the estimate of 10B came from. I saw the estimate of 9B in a lot of news reports relating to CCC, and I rounded up to be conservative, but I couldn’t easily find CCC materials confirming this number)
If this works, no significant warming will be allowed to occur after the political static friction that opposes the use of geoengineering is broken.
Isn’t any amount of mean warming bad? So shouldn’t we deploy something like this as soon as possible? Shouldn’t we have started deploying it years ago?
Side effects seem minimal. Relative to seeding clouds with sulpherous chemicals (which will also be considered, once the heat becomes unbearable), it leaves no ozone-eliminating residue, it produces no acid rain. It may disturb rainfall in some regions, but it seems that it may be viable to just avoid seeding too close those regions.
I want to make it clear how little support this needs in order to get done: 10 billion USD is less than a quarter of the tax income generated by the nation of just New Zealand one year. A single tiny oecd government could, in theory, do it alone. It wont need the support of a majority of the US. It probably wont require any support from the US at all.
What should we do with this information?
I do buy the claim that public support for any sort of emission control will evaporate the moment geoengineering is realised as a tolerable alternative. Once the public believe, there will never be a quorum of voters willing to sacrifice anything of their own to reduce emissions. I think we may need to start talking about it anyway, at this point. Major emitters have already signalled a clear lack of any real will to change. The humans will not repent. Move on. Stop waiting for humanity to be punished for its sin, act, do something that has some chance of solving the problem.
Could the taboos against discussing geoengineering delay the discovery of better, less risky techniques?
Could failing to invest in geoengineering research ultimately lead to the deployment of relatively crude approaches with costly side effects? (Even if cloud brightening is the ultimate solution to warming, we still need to address ocean acidification and carbon sequestration, and I’m not aware of any ideal solution to those problems yet, but two weeks ago I wasn’t aware of cloud brightening, so for all I know the problem isn’t a lack of investment, might just be a lack of policy discussion.)
Public funding for geoengineering research is currently non-existent in the US (All research in the US is either privately funded or funded by universities), and weak in China (3M USD. 14 members, no tech development, no outdoor experiments.)
I’ll give an answer that considers the details of the Copenhagen Consensus Center (CCC) and geoengineering, rather than being primarily a priori. I’ve spent a day and a half digging around and have zero prior knowledge. I spent too much time reading Lomborg and CCC in retrospect, so I mention him disproportionately relative to other sources.
Cross-posted to my blog.
Here’s what I notice:
1. Lomborg and his CCC seem very cost-benefit focused in their analysis. A few others are too, but see point 4. Basically, it’s easy to compare climate interventions to other interventions, but hard to figure out how much damage warming and other climate change will cause, so you can’t really figure out the benefit part of the cost-benefit analysis.
2. Lomborg and his CCC has recieved a ton of criticism for systematically making errors that underestimate the effect of climate change, and never making errors that overestimate the effect of it. One detailed account of him making such an error that could not have been made in good faith, is given here. He also literally lies in his cost-benefit analysis (by more than 10x).
There’s a lot of articles about Lomborg e.g. taking a 700k salary and getting donations from Koch and Exxon, which showed up before I found the above examples of him lying about data. I reacted to the info on his salary/funding by saying, “this is indicative of him being sketchy, but instead of just changing my estimate of how likely he is to be sketch by however much (“updating”) and calling it a day, I’m going to take this as a cue to dig into things until I have a firm understanding of whether this guy is systematically lying or not”. Turns out he’s a liar (see previous paragraph).
3. Page 33 of this CCC paper notes that,
Which corresponds to a 0.6 C average temperature change. This should put in perspective what a huge effect a 0.3% change in how much heat gets stays in earth’s atmosphere has on global temperatures. If all the glaciers melted, the earth’s temperature would rise 10 C, because glaciers are good at reflecting heat back away from the earth (back of envelope, me); if the earth became totally frozen, the temperature would drop by 55 C (see this page), which is why the thing this post is about, MCB, can realistically change global temperatures by a couple degrees C. Note that 1⁄2 of the global temperature change that already happened was because some glaciers and snow already melted and stopped reflecting heat away from the earth. Basically, the science behind MCB is pretty solid and I’d expect it to basically work.
AFAICT the IPCC estimates of how much warming there will be in the future seem to take into account the fact that the melting of the glaciers will further speed warming in itself, in addition to the warming you get from rising CO2 levels. Except they don’t ever explicitly say whether that was considered as a factor, so I can’t be totally sure they took that into account, even though it sounds like the most obvious thing to consider. (I skimmed this whole damn thing, and it wasn’t said either way!) I guess my next course of action could be to annoy an author about it, though I think I’ll be lazy and not.
4. We have little enough data on “how much economic damage has global warming done so far” that we can’t make decent extrapolations to “how much economic damage will global warming do later”. Like, you have papers saying that the economic damage from 3 C of warming could be 1%, 5-20%, 23%, or 35% of the GDP. When you have zip for data, you fall back on your politics.
5. The obvious game theory consideration of, “it’s better if someone other than you spends money on global warming”. The normal lefty position of, “our institutions aren’t set up to coordinate well on this sort of problem, and every action against climate change, until we change, will predictably be a stopgap measure”. The unusual conservative position of, “just do the cost-benefit analysis for MCB”. How much damn energy I’ve spent filtering out the selectivity in what scraps of data scientists and economists want to show me. /rant
Here’s what I’m taking away from all that:
CCC isn’t reliable in general, but others have made estimates of the cost of worldwide MCB. I’m inclined to believe CCC about MCB in particular, as their numbers match up with others’. MCB is the most cost-effective climate intervention by a ~50x margin, and the estimated cost of worldwide MCB is 750M-1.5B USD annually. The exact technology needed to do MCB hasn’t been fleshed out yet, but could be engineered in a straightforward way.
By CCC’s own analysis, deploying worldwide MCB is >10x more cost-effective than standard global poverty interventions, and the fact that OPP and Givewell have far more funding than they know what to do with (even though they’re lying and saying they don’t), makes MCB even more attractive than this in practice.
Personally, I suspect that fleshing out the details of how MCB could be done in practice, would be more cost-effective than instituting a full-blown implementation of MCB, as having a well-defined way to implement it would reduce the friction for other(s) to implement it. Once I have hella money, it’s something I’d fund (the research on how to do it, but certainly not the actual MCB). Like, to get things to the point of having a written plan, “hey government, here’s exactly how you can do MCB if you want, now you can execute this plan as written if/when you choose”. I expect other interventions (re: factory farming) to be more effective than the actual MCB at preventing suffering.
Thanks for reading, and thanks for bringing MCB to my attention. Stay awesome.
Thank you for looking into this! <3
I do think you might have put too much energy into thinking about the CCC though, haha. Maybe I should apologise for having mentioned them, without mentioning that I knew they’d taken money from dirty energy and I never got good epistemic vibes from them.
When I saw that stuff, I just read that as one of the many things we’d expect to see if MCB was legit, like, there would be a think-tank funded by dirty energy singing its praises, and even if that thinktank were earnest, I would still expect anyone who actually gave a shit about solving the problem to take the dirty money, because this kind of research ought to be rateable on the basis of whether or not it is true, rather than who paid for it, an extravagantly costly purity allegiance signal such as rejecting money from the richest people who benefit from your research should not carry a lot of discursive weight (and I’m still fairly sure it wouldn’t have).
What set off alarm bells for me was when I realised just how much the individuals in the CCC were taking in salary for the kind of work they’re doing. It would seem to me that genuine activists never get paid like that. I’m still not sure what that means, though. They live in world I don’t know much about.
I suppose part of the reason I mentioned them is that they seemed to be gathering a lot of interesting heresies that our friends might like to know about, not just MCB. Did you find that was the case?
Thanks! This all sounds right. “CCC has interesting heresies”—was there stuff other than MCB and global poverty? It’s an interesting parallel to EA—that they have interesting heresies, but are ultimately wrong about some key assumptions (that there’s room for more funding/that MCB is sufficient to stop all climate change, respectively. And they both have a fetish for working within systems rather than trying to change them at all.)
Kinda a shame that leftists are mostly not coming to the “how can we change systems that will undo any progress we make” thing with an effectiveness mindset, though at least these people are.
What’s the literal lie, here? The link seems to say that a group led by Lomborg made misleading statements about how they made their prioritisations, but I can’t see any outright falsehoods.
b/c of doing the analysis and then not ranking shit in order.
do your own research if you disagree, but if you use “apparently because it is deemed rather uncertain if this will actually work as intended.” as an excuse to rate something poorly because you wanted to anyways rather than either do more research and update it, or even just make a guess, then wtf?
We are not playing, “is this plausibly defensible”, we are playing, “what was this person’s algorithm and are the systematically lying”.
I prefer to reserve “literally lying” for when people intentionally say things that are demonstrably false. It’s useful to have words for that kind of thing. As long as things are plausibly defensible, it seems better to say that he made “misleading statements”, or something like that.
Actually, I’m not even sure that this was a particularly egregious error. Given that they never say they’re going to rank things after the explicit cost-effectiveness estimates, not doing that seems quite reasonable to me. See for example givewell’s why we can’t take expected value estimates literally. All the arguments in that article should be even stronger when it’s different people making estimates across different areas. If you think that people should “make a guess” even when they don’t have time to do more research, that’s a methodological disagreement with a non-obvious answer.
I still think it’s plausible that some of the economists were acting in bad faith (it’s certainly bad that they don’t even give qualititive justifications for some of their rankings). But when their actions are plausibly defensible in any particular instance, you need several different pieces of evidence to be confident of that (like where they get their funding from, if they’re making systematic errors in the same direction, etc). If someone are saying things that I would classify as “literal lies”, that’s significantly stronger evidence that they’re acting in bad faith, which means you can skip over some of that evidence-gathering. I thought that you were claiming that Lomborg had made such a statement, and the fact that he hadn’t makes a large difference from my epistemical point of view, even if you have heard sufficiently much unrelated evidence to belive that he’s systematically acting in bad faith.
If you want to spend time predictably spinning in circles in your analysis because you can’t bring yourself to believe someone is lying, be my guest.
As for the specific authors: the individual reports written seem fine in themselves, and as for the geoengineering one, I know a guy who did a PhD under the author and said he’s generally trustworthy (I recall Vaniver was in his PhD program too). Like what I’m saying is the specific reports, e.g. Bickel’s report on geoengineering, seem fine, but Lomborg’s synthesis of them is shit, and you’re obscuring things with your niceness-and-good-faith approach.
Less of this, please. From what Lanrian is citing Lomborg does not come close to outright lying. (there might be more in the link, I have not read anything but the comments.) Accusing somebody of literally lying is a very strong accusation and should only be done in the egregious cases for all the usual reasons.
You are clearly well-informed about this matter. Your earlier comment was helpful and updated me in various directions. You could make me update me even more by applying the Principle of Charity.
Raw answer: no. Law and politics work on https://blog.jaibot.com/the-copenhagen-interpretation-of-ethics/ , and the legal liability will outweigh any actual costs by orders of magnitude. And the actual costs are probably WAY underestimated, ignoring inefficiencies and overhead of any real-world group that could undertake it.
There is also good reason to be cautious about the undertaking itself. We have no data on what actual weather shifts will occur with this scale of geoengineering, and the models have pretty large error bars. I don’t know enough to say whether we CAN undertake small-scale projects to measure, or whether it’s just impossible to know until we can model global weather in detail.
All that said, I suspect we’re near the point where failing to take control via geoengineering will doom us anyway, so the risky attempt is likely justified.
Is there such a thing as “EA, but for carbon offsetting”? I can imagine an organisation that would invest in a weighted mix of direct carbon capture, lobbying, geoengineering, funding renewable energy, research, …
All I can say about offsetting is that ~~most international flights will be offsetted by 2020~~, and it seems like that amount of carbon would only cost about 20$ per passenger per flight, which is to say, offsetting seems to be shockingly cheap.
Is this based on https://www.wired.com/story/airline-emissions-carbon-offsets-travel/ ? I think https://slatestarcodex.com/2019/08/05/links-8-19/#comment-783425 might be relevant—it seems only the increase compared to 2019 is being offset, not the whole flight.
No, with ~95% confidence.
The central problem of geoengineering projects is that there is no reason to even entertain the notion that they will perform differently than regular projects. They will be over budget by about the same amount, miss their timelines by about the same amount, and miss their performance targets by about the same amount. This last point is the real crux of the matter, because we are talking about large scale, irreversible changes to the environment. The only way to remedy an error is by using the same error-prone process that caused it in the first place.
That being said, there are new methods available for managing huge and complex projects. Then it is a matter of adopting the methods.
If the true cost were double or triple the $10B estimate, this wouldn’t significantly change the implications; $30B is not significantly less feasible.
The implications are significantly different if $10B turns into $30B while the project is underway, which is the norm. The timeline is also significant, and delays of 2-10 years matter a great deal to how successful the project is going to be.
The things you’re saying are true of estimates in civic engineering, but I don’t know that they’re true of estimates in climate science.
Estimated effects of climate change seem to have been drastically below the real outcomes, in many respects, we’re 40 years ahead of schedule (and even when I say that, I am removing 10 years from the claim just to make sure I’m not overstating the effect; this is how reluctant people are to acknowledge the full insane reactivity of the climate).
You could, if you really wanted to, describe climate models as optimistic, and if climate models are optimistic then geoengineering models might be optimistic too, in which case they’d be less effective than estimated. It seems to me that climate scientists seem more inclined to conservatism than optimism. I think a much more reasonable reading of their models is that they were conservative, understating the effect, in which case, if this tendency transfers, geoengineering will be more effective than estimated.
It should be noted, however, that geoengineers are kind of a weird hybrid of civic engineers and climate scientists, so it’s not clear which epistemic character we should expect them to express more often. Perhaps we should get to know some of them better before making a call like that.
It does not follow that because climate models are bad to an unknown degree, geoengineering projects will overperform to a symmetric degree. This is a common assumption among large projects, but it is also a specific failure mode.
I’m not doing syllogisms here. The heuristic might not dominate the effects but it seems like a valid heuristic.
In which larger projects has the assumption “climate models are bad, so geoengineering may overperform” been at play? I’m not familiar with any historical geoengineering projects, I’m not aware there’s been any, unless you count all of the accidental cloud seeding that occurred as a result of sulphur in cargo boat emissions, which seemed more like an unexpected success.
To my knowledge, none. This is because to my knowledge there has never been such a project.
I claim that there is no reason to expect geoengineering to be different than any other field in project outcomes. I claim further there are strong causal reasons to expect them to be the same. Large projects behave similarly regardless of whether we are talking civil infrastructure, oil & gas, energy, mining, aerospace, entertainment or defense. There is no trait of geoengineering which can differentiate it from this pattern.
This is because the problems are not driven by the field from which the project originates, but by the irreducible complexity that comes with size. Absent a specific commitment to dealing with irreducible complexity problems, we should expect budget and timeline estimates to be badly wrong.
Note this doesn’t make geoengineering a bad field or their projects worse than other projects; the thing I am pointing to is that we need separate expertise to make it work the way we need. We cannot afford to spend multiple projects worth of budget on only one project, and we really cannot afford to be surprised by a 10 year delay.
The industrial aspect of MCB seems to be “numerous, autonomous boats spraying water”. Building a lot of adequately-reliable boats doesn’t sound like your typical megaproject, but more of an assembly-line job, something like liberty ships. Adequately developing the process of managing large numbers of drone ships might be a pre-requisite, and doubtless has other military and civil applications.
(Of course, whether MCB affects the climate as hoped is another question altogether).
As it happens, coordinating a large assembly-line project is fairly standard megaproject material. Ships, aircraft, and semiconductors are good examples.
The hitch is your example assumes a WWII-grade of funding and coordination. Do you think that can be achieved quickly enough, cheaply enough, and reliably enough to be ignored when proposing such a project?
I think a very significant (probably even dominant) fraction of this geoengineering project would not be the industrial aspect but the organisational and political aspects. Building some ships sounds very doable (although I don’t know to what extend “spraying water” and “autonomous” are assembly-line projects, do we already have industries that make ships like this?) , coordinating around letting them sail around and alter the atmosphere less so.
Maybe I could be clearer. I’m proposing that we will need to do less of it than we thought, that we will get halfway when we were supposed to be all the way, but then maybe tests will reveal that this is enough. Geoengineering is a megaproject where, yes we may underestimate the amount of time it will take to get them to the stage of completion we thought we needed, but we may also overestimate how far we needed to get.
As Greylag mentions, producing the boats will be a continuous process, it will be possible to stop halfway if that turns out to be sufficient, although I suppose most of the cost will be at the beginning so I’m not sure how significant that is here.
I think that is plausible, and I think the factors you mention are definitely a virtue of the MCB approach. A further one is that even if we were to produce too few, the ones we did produce would still result in marginal gains. I also agree that most of the cost will be at the beginning; even more so if it is done correctly.
But I point out the error in estimating how many boats will be needed is completely independent of the error in estimating the timeline and costs for setting up production; we aren’t at liberty to assume they will even approximately balance out. I think it is reasonable to infer that the longer the delay until operations start, the more boats will be needed to achieve the goal. This means the risk is lopsided primarily on the side of costs increasing; there’s no particular likelihood of things being much cheaper or faster than expected, like we expected production to start in five years and it mysteriously happened in three.
These are all solvable problems, mind; the core of my criticism is that there are specific issues that arise from the bigness of challenges alone, and that we need to account for them deliberately. This is not done in baseline cost or time estimates, and rarely done even among people who are experienced in tackling big challenges, so we aren’t at liberty to assume that we can hand it off to experienced practitioners and they will handle it.