Some people consider it a good form to back up your accusations with examples, facts and proofs, even when discussing topics dear to their hearts. Give it a try some time.
Okay. Name a state of affairs that could correspond to RQM without being MWI.
PS: Whenever you say that something is ‘true relative to’ B, please replace it with a state of affairs and a description of B’s truth-predicate over possible states of affairs.
Okay. Name a state of affairs that could correspond to RQM without being MWI.
First, the onus is on you to show that the above is both relevant to your claim of “bad amateur incoherent epistemology” and that there is no such state of affairs, since it’s your claim that RQM is just a word game.
But, to indulge you, here is one example:
different observers may give different accounts of the same series of events: for example, to one observer at a given point in time, a system may be in a single, “collapsed” eigenstate, while to another observer at the same time, it may appear to be in a superposition of two or more states.
Whereas in MWI, unless I misunderstand it, each interaction (after the decoherence has ran its course) irrevocably splits the world into “eigenworlds” of the interaction, and there is no observer for which the world is as yet unsplit:
n DeWitt’s formulation, the state of S after a sequence of measurements is given by a quantum superposition of states, each one corresponding to an alternative measurement history of S.
P.S. Just to make it clear, I’m not an adherent of RQM, not until and unless it gives new testable predictions not available without it. Same applies to all other interpretations. I’m simply pointing out that MWI is not the only game in town.
So in MWI, this presumably arises when e.g. you’ve got 3 possible states of X, and version A of you decoheres with state 1 while version B is entangled with the superposition of 2+3. In RQM this is presumably described sagely as X being definitely-1 relative to A while X is 2+3 relative to B. Then if you ask them whether or not this statement itself is a true, objective state of affairs (where a ‘yes’ answer immediately yields MWI) there’s a bunch of hemming and hawing.
Ignoring your unhelpful sarcastic derision… You should know better, really.
Take an EPR experiment with spatially separated observers A and B. If A measures a state of a singlet and the world is split into Aup and Adown, when does B split in this world, according to MWI?
In RQM, it does not until it measures its own half of the singlet, which can be before of after A in a given frame. Its model of A is a superposition until A and B meet up and compare results (another interaction). The outcome depends on whether A actually measured anything and if so, in which basis. None of this is known until A and B interact.
I know I’m late to the party, but I couldn’t help but notice that this interesting question hadn’t been answered (here, at least). So here it is: as far as I know, B ‘splits’ immediately, but this in an unphysical question.
In MWI we would have observers A and B, who could observe Aup or Adown and Bup or Bdown (and start in |Aunknown> and |Bunknown> before measuring) respectively. If we write |PAup> and |PAdown> for the wavefunctions corresponding to the particle near observer A being in the up resp. down states, and introduce similar notation for the particle near observer B, then the initial configuration is:
Important is that this is a local change to the wavefunction, what happened here is merely that A measured the particle near A. Since observer A is a macroscopic object we would expect the two branches of the wavefunction above (separated by the minus sign) to be quite far apart in configuration space, so the worlds have definitely split here. But B still isn’t correlated to any particular branch: from the point of A, person B is now in a superposition. In particular observer B doesn’t notice anything from this splitting—as we would expect (splitting being a local process and observers A and B being far apart). This is also why I called the question as to when B splits ‘unphysical’ above, since it is a property known only locally at A, and in fact the answer to this question wouldn’t change any of B’s anticipations.
This might seem a lot like RQM, and that is because RQM happens to get the answer to this question right. The problem with RQM (at least, the problem I ran into while reading the paper) was that the author claims that measurements are ontologically fundamental, and wavefunctions are only a mathematical tool. This seems to confuse the map with the territory: if wavefunctions are only part of our maps, what are they maps of? Also if wavefunctions aren’t part of the territory an explanation is needed for the observation that different observers can get the same results when measuring a system, i.e. an explanation is needed for the fact that all observations are consistent. It seems unnecessarily complicated to demand that wavefunctions aren’t real, and then separately explain why all observations are consistent as they would have been if the wavefunction were real.
I think this is what Eliezer might have meant with
As far as I can tell, the only possible coherent state of affairs corresponding to RQM—the only reality in which you can embed these systems relating to each other—is MWI
RQM seems to assert precisely what MWI asserts, except that it denies the existence of objective reality, and then needs a completely new and different explanation for the consistency between measurements by different observers. I found the insults hurled at RQM by Eliezer disrespectful but, on close inspection, well-deserved. Denying reality doesn’t seem like a good property for a theory of physics to have.
It seems unnecessarily complicated to demand that wavefunctions aren’t real, and then separately explain why all observations are consistent as they would have been if the wavefunction were real.
Denying reality, and denying the reality of the .WF aren’t the same thing.
Suppose RQM is only doing the latter. Then, you have observers who are observing a consistent objective reality, and mapping it accurately with WFs, then their maps will agree. But that doesn’t mean the terrain had all the features of the map. Accuracy is a weaker condition than identity.
Consider an analogy with relativity. There is a an objective terrain of objects with locations and momenta, but to represent it an observer must supply a coordinate system which is not part of the territory.
I am starting to get confused by RQM, I really did not get the impression that this is what was claimed. But suppose it is.
To stick with the analogy of relativity, great efforts have been made there to ensure that all important physical formulas are Lorentz-invariant, i.e. do not depend on these artificial coordinate system. In an important sense the system does not depend on your coordinates, although for actual calculations (on a computer or something) such coordinates are needed. So while (General) Relativity indeed satisfies the last line you gave, it also explains exactly how (un)necessary such coordinate systems are, and explains exactly what can be expected to be shown without choosing a coordinate system.
Back to RQM. Here this important explanation of which observables are still independent of the observer(/initial frame) and which formulas are universal are painfully absent. It seems that RQM as stated above is more of an anti-prediction - we accept that each observer can accurately describe his experimental outcomes using QM, and different observers agree with eachother because they are looking at the same territory, hence they should get matching maps, and finally we reject the idea that these observer-dependent representations can be combined to one global representation.
Again I stuggle to combine this method of thought with the fact that humans themselves are made of atoms. If we assume that wavefunctions are only very useful tools for predicting the outcomes of experiments, but the actual territory is not made of something that would be accurately represented by a wavefunction, I run into two immediate problems:
1) In order to make this belief pay rent I would like to know what sort of thing an accurate description of the universe would look like, according to RQM. In other words, where should we begin searching for maps of a territory containing observers that make accurate maps with QM that cannot be combined to a global map?
2) What experiment could we do to distinguish between RQM and for example MWI? If indeed multiple observers automatically get agreeing QM maps by virtue of looking at the same territory, then what experiment will distinguish between a set of knitted-together QM maps and an RQM map as proposed by my first question? Mind you, such experiments might well exist (QM has trumped non-mathy philosophy without much trouble in the past), I just have a hard time thinking of one. And if there is no observable difference, then why would e favour RQM over the stiched-together map (which is claiming that QM is universal, which should make it simpler than having local partial QM with some other way of extending this beyond our observations)?
My apologies for creating such long replies, summarizing the above is hard. For what it’s worth I’d like to remark that your comment has made me update in favour of RQM by quite a bit (although I still find it unlikely) - before your comment I thought that RQM was some stubborn refusal to admid that QM might be universal, thereby violating Occam’s Razor, but when seen as an anti-prediction it seems sorta-plausible (although useless?).
To stick with the analogy of relativity, great efforts have been made there to ensure that all important physical formulas are Lorentz-invariant, i.e. do not depend on these artificial coordinate system. In an important sense the system does not depend on your coordinates, although for actual calculations (on a computer or something) such coordinates are needed. So while (General) Relativity indeed satisfies the last line you gave, it also explains exactly how (un)necessary such coordinate systems are, and explains exactly what can be expected to be shown without choosing a coordinate system.
Back to RQM. Here this important explanation of which observables are still independent of the observer(/initial frame) and which formulas are universal are painfully absent
..is echoed by no less than Jaynes:-
The title is taken from a
passage of Jaynes [2], presenting the current quantum
mechanical formalism as not purely epistemological; it is
a peculiar mixture describing in part realities of Nature,
in part incomplete human information about Nature – all
scrambled up by Heisenberg and Bohr into an omelette
that nobody has seen how to unscramble
RQM may not end in an I, but it is still an interptetation.
What the I in MWI means is that it is an interpretation, not a theory, and therefore neither offers new mathematical apparatus, nor testable predictions.
and finally we reject the idea that these observer-dependent representations can be combined to one global representation.
Not exactly, RQM objects to observer independent state. You can have global state, providing it is from the perspective of a Test Observer, and you can presumably stitch multiple maps into such a picture.
Or perhaps you mean that if you could write state in a manifestly basis-free way, you would no longer need to insist on an observer? I’m not sure. A lot of people are concerned about the apparent disappearance of the world in RQM.
There seems to be a realistic and a non realistic version of RQM. Rovellis version was not realistic, but some have added an ontology of relations.
In other words, where should we begin searching for maps of a territory containing observers that make accurate maps with QM that cannot be combined to a global map?
its more of a should not than a cannot.
2) What experiment could we do to distinguish between RQM and for example MWI?
Well, we can’t distinguish between MWI and CI, either.
Just because something is called an ‘interpretation’ does not mean it doesn’t have testable predictions. For example, macroscopic superposition discerns between CI and MWI (although CI keeps changing its definition of ‘macroscopic’).
I notice that I am getting confused again. Is RQM trying to say that reality via some unknown process the universe produces results to measurements, and we use wavefunctions as something like an interpolation tool to account for those observations, but different observations lead to different inferences and hence to different wavefunctions?
There is nothing in Copenhagen that forbids macroscopic superposition. The experimental results of macroscopic superposition in SQUIDs are usually calculated in terms of copenhagen (as are almost all experimental results).
That’s mainly because Copenhagen never specified macrsoscopic …but the idea of an unequivocal “cut” was at the back of a lot of copenhagenists minds, and it has been eaten away by various things over the years.
So there are obviously a lot of different things you could mean by “Copenhagen” or “in the back of a lot of copenhagenist minds” but the way it’s usually used by physicists nowadays is to mean “the Von Neumann axioms” because that is what is in 90+% of the textbooks.
Physicists are trained to understand things in terms of mathematical formalisms and experimental results, but that falls over when dealing with interpretation. Interpretations canot be settled empirically, by definition,, and formulae are not self interpreting.
For some values of “wavefunction”, you are going to have different observers writing different wavefunctions just because they are using different bases...that’s a practical issue that’s still true if you believe in, but cannot access, theOne True Basis, like a many worlder.
How are you defining territory here? If the territory is ‘reality’ the only place where quantum mechanics connects to reality is when it tells us the outcome of measurements. We don’t observe the wavefunction directly, we measure observables.
I think the challenge of MWI is to make the probabilities a natural result of the theory, and there has been a fair amount of active research trying and failing to do this. RQM side steps this by saying “the observables are the thing, the wavefunction is just a map, not territory.”
See my reply to TheAncientGeek, I think it covers most of my thoughts on this matter. I don’t think that your second paragraph captures the difference between RQM and MWI—the probabilities seem to be just as arbitrary in RQM as they are in any other interpretation. RQM gets some points by saying “Of course it’s partially arbitrary, they’re just maps people made that overfit to reality!”, but it then fails to explain exactly which parts are overfitting, or where/if we would expect this process to go wrong.
To my very limited understanding, most of QM in general is completely unnatural as a theory from a purely mathematical point of view. If that is actually so, what precisely do you mean by “natural result of the theory”?
Actually most of it is quite natural, QM is the most obvious extension that you get when you try to extend the concept of ‘probability’ to complex numbers, and there are some suggestions why you would want to do this (I think the most famous/commonly found explanation is that we want ‘smooth’ operators, for example if turning around is an operator there should also be an operator describing ‘half of turning around’, and another for ‘1/3 of turning around’ etc., which for mathematical reasons immediately gives you complex numbers (try flipping a sign in two identical steps, this is the same as multiplying by i)).
To my best knowledge the question of why we use wavefunctions is a chicken-and-the-egg type question - we want square integrable wavefunctions because those are the solution of Schrodingers equation, we want Schrodingers equation because it is (almost) the most general Hermitian time-evolution operator, time-evolution operators should be Hermitian because that is the only way to preserve unitarity and unitarity should be preserved because then the two-norm of the wavefunction can be interpreted as a probability. We’ve made a full circle.
As for your second question: I think a ‘natural part of the theory’ is something that Occam doesn’t frown upon - i.e. if the theory with the extra part takes a far shorter description than the description of the initial theory plus the description of the extra part. Informally, something is ‘a natural result of the theory’ if somehow the description for the added result is somehow already partly specified by the theory.
Again my apologies for writing such long answers to short questions.
Thank you, that was certainly insightful. I see now that it is some kind of natural extension of relevant concepts.
I have been told however that from a formal point of view a lot of QM (maybe they were talking only about QED) makes no sense whatsoever and the only reason why the theory works is because many of the objects coming up have been redefined so as to make the theory work. I don’t really know to what extent this is true, but if so I would still consider it a somewhat unnatural theory.
I confess I’m not quite clear on your question. Local processes proceed locally with invariant states of distant entanglement. Just suppose that the global wavefunction is an objective fact which entails all of RQM’s statements via the obvious truth-condition, and there you go.
Local processes proceed locally with invariant states of distant entanglement.
Not sure what this means, at least not past “local processes proceed locally”, which is certainly uncontroversial, if you mean to say that interaction is limited to light speed.
Just suppose that the global wavefunction is an objective fact
“an objective fact”? As in a map from something to C? If so, what is that something? Some branching multiverse? Or what do you mean by an objective fact?
which entails all of RQM’s statements via the obvious truth-condition
What’s B? A many-worlds counterpart of A? Another observer enitrely?
In rQM, if one observer measures X to be in state 1, no other observer can disagree (How may times do I have to point that out?). But they can be uiniformed as to what state it is—ie it is superposed for them.
I’m not an adherent of RQM, not until and unless it gives new testable predictions not available without it.
By definition, interpretations don’t give testable predictions. Theories give testable predictions.
EDIT: having said that, rQM ontology, where information is in relations, not in relata, predicts a feature of the formalism—that when you combine Hilbert spaces, what you have is a product not a sum. That is important for
understanding the advantages of quantum computation.
By definition, interpretations don’t give testable predictions. Theories give testable predictions.
Definitions can be wrong.
I understand that well-meaning physics professor may have once told you that. However the various quantum mechanics interpretations do in fact pre-suppose different underlying mechanisms, and therefore result in different predictions in obscure corner cases. For example, reversible measurement of quantum phenomenon results in different probabilities on the return path in many-worlds vs the Copenhagen interpretation. (Unfortunately we lack the capability at this time to make fully reversible experimental aparatus at this scale.)
Actually, Nobel does not begin to cover it, whether it would be awarded or not (even J.S. Bell didn’t get one, though he was nominated the year he died). Showing experimentally that, say, there is an objective collapse mechanism of some sort would probably be the biggest deal since the invention of QM.
And even just formally applying all the complexity stuff that is alluded to in the sequences, to the question of QM interpretation, would be a rather notable deed.
That page lists three ways in which MWI differs from the Copenhagen interpretation.
One has to two with further constraints that MWI puts on the grand unified theory: namely that gravity must be quantized. If it turns out that gravity is not quantized, that would be strong evidence against the basic MWI explanation.
The second has to do with testable predictions which could be made if it turns out that linearity is violated. Linearity is highly verified, but perhaps it does break down at high energies, in which case it could be used to communicate between or simply observe other Everett branches.
Finally, there’s an actual testable prediction: make a reversible device to measure electron spin. Measure one axis to prepare the electron. Measure an orthogonal axis, then reverse that measurement. Finally measure again on the first axis. You’ve lost your recording of the 2nd measurement, but in Copenhagen the 1st and 3rd should agree 50% of the time by random chance, because there was an intermediate collapse, whereas in MWI they agree 100% of the time, because the physical process was fully reversed, bringing the branches back into coherence.
We just lack the capability to make such a device, unfortunately. But feel free to do so and win that Nobel prize.
Finally, there’s an actual testable prediction: make a reversible device to measure electron spin. Measure one axis to prepare the electron. Measure an orthogonal axis, then reverse that measurement. Finally measure again on the first axis. You’ve lost your recording of the 2nd measurement, but in Copenhagen the 1st and 3rd should agree 50% of the time by random chance, because there was an intermediate collapse, whereas in MWI they agree 100% of the time, because the physical process was fully reversed, bringing the branches back into coherence.
But such device is not physically realizable, as it would involve reversing the thermodynamic arrow of time.
You can reversibly entangle an electron’s spin to the state of some other small quantum system, that’s not questioned by any interpretation of QM, but unless this entanglement propagates to the point of producing a macroscopic effect, it is not considered a measurement.
It’s even worse than that. Zurek’s einselection relies on decoherence to get rid of non-eigenstates, and reversibility is necessarily lost in this (MWI-compatible) model of measurement. There is no size restriction, but the measurement apparatus (including the observer looking at it) must necessarily leak information to the environment to work as a detector. Thus a reversible computation would not be classically detectable.
Which is why the experiment as described in the link I provided requires an artificial intelligence running on a reversible computing substrate to perform the experiment in order to provide the macroscopic effect.
Indeed. Truly reversing the measurement would involve also forgetting what the result of the measurement was, and Copenhagenists would claim this forgotten intermediate result does not count as a “measurement” in the sense of something that (supposedly) collapses the wave function.
Okay. Name a state of affairs that could correspond to RQM without being MWI.
Easy: no observer-independent state. No contradictory observations. No basis problem.
(Of course that isn’t an empirical expectation-predicting difference, and of course there is no reason it should be, since interpretations are not theories).
That is not a state of affairs, it is a list of questions you aren’t trying to answer. I am asking for a concrete description of how the universe could possibly be that would correspond to RQM being true and MWI being false.
It isn’t a list of questions, it is a list of assertions about state of the state of the universe made by rQM paired with differing ones made by MWI. If you can spot the MWI ones, you can figout the rQM ones. If you can’t, Ill pull out the rQM ones:
There is no universal state.
There is universal basis.
State is a observer’s map,
“Collapse” is receipt of information by an observer, not an objective process.
There is an ontology of relations.
Observers cannot disagree about information, but can have different levels of information.
“There is no universal state.” is barely an assertion about the state of the universe. Okay, there’s no “universal state”. What is there instead? I can’t write a simulation of a universe with “no universal state” without further information.
Some people consider it a good form to back up your accusations with examples, facts and proofs, even when discussing topics dear to their hearts. Give it a try some time.
I am disappointed that this move was validated with compliance.
To be fair, I should have pointed out what I meant, and I didn’t:
bad amateur incoherent epistemology
That’s three adjectives in a row with a negative connotation. In a reasonably rational discourse one would expect some comparative discussion of epistemology in both interpretations and pointing relative strength and weaknesses of each.
RQM is MWI in denial
This requires showing that RQM is a subset of MWI, so it’s a repetition of the original statement, only with some extra derision.
RQM is merely playing semantic word-games with the notion of reality
How would you phrase it in a neutral way?
RQM’s epistemology is drunk and needs to go home and sleep it off
That’s just insults, surely not the best way to get your point across.
To be fair, my reply had some of the same faults:
Give it a try some time.
This was quite unfair of me. Most of your writings do have a good number of “examples, facts and proofs”, as well as eloquence and lucidity. The problem arises when you get annoyed or frustrated, which is only human.
No, I understood what you meant. Otherwise I wouldn’t have taken a shot at complying. Really RQM deserves its own post carefully dissecting it, but I may not have time to write it.
A very quick but sufficient refutation is that the same math taken as a description of an objectively existing causal process gives us MWI, hence there is no reason to complicate our epistemology beyond this to try to represent RQM, even if RQM could somehow be made coherent within a more complicated ontology that ascribed primitive descriptiveness to ideas like ‘true relative to’. MWI works, and RQM doesn’t add anything over MWI (not even Born probabilities).
I tend to agree with you. As I said before, to me RQM to MWI is what “shut up and calculate” is to Copenhagen. Unfortunately, I have a feeling that I am missing some important point Eliezer is making (he tends to make important points, in my experience). For example, in the statement
a description of an objectively existing causal process gives us MWI, hence there is no reason to complicate our epistemology beyond this to try to represent RQM
I do not understand where, in his opinion, RQM adds a complication to (what?) epistemology.
Instead of having causal processes which are real, we now need causal processes which are ‘real relative to’ other causal processes. To prevent the other worlds from being real enough to have people inside them, we need to insist very loudly that this whole diagram of what is ‘real relative to’ other things, is not itself real. I am not clear on how this loud insistence can be accomplished. Also, since only individual points in configuration space allow one particle to say that another particle is in an exact position and have this be ‘real’, if you take a blob of amplitude large enough to contain a person’s causal process, you will find that elements of a person disagree about what is real relative to them...
...and all these complications are just pointless, there’s no need for our ontology to have a notion like ‘real relative to’ instead of just talking about causes and effects. RQM doesn’t even get any closer to explaining the Born probabilities, so why bother? It’s exactly like a version of Special Relativity that insists on talking about ‘real lengths relative to’ instead of observer-invariant Minkowskian spacetime.
My best guess at the lack of agreement here is the difference in yours and mine ontology at a rather basic level. Specifically, your ontology seems to be
Since my expectations sometimes conflict with my subsequent experiences, I need different names for the thingies that determine my experimental predictions and the thingy that determines my experimental results. I call the former thingies ‘beliefs’, and the latter thingy ‘reality’.
whereas mine does not have “the thingy that determines my experimental results” and treats these results as primitive instead. As a consequence, everything is a model (“belief”), and good models predict experimental results better. So there is no need to use the term “real” except maybe as a shorthand for the territory in the map-territory model (which is an oft useful model, but only a model).
You can probably appreciate that this ontological difference makes statements like
since only individual points in configuration space allow one particle to say that another particle is in an exact position and have this be ‘real’, if you take a blob of amplitude large enough to contain a person’s causal process, you will find that elements of a person disagree about what is real relative to them...
where the term “real” is repeated multiple times, lose meaning if one only cares about making accurate models.
Now, I cannot rule out that your ontology is better than my ontology in some sense of the term “better” acceptable to me, but that would be a discussion to be had first, before going into the interpretational problems of Quantum Mechanics. I can certainly see how adopting your ontology of objective reality may lead one to dislike RQM, which evades pinning down what reality is in the RQM view. On the other hand, you can probably agree that removing objective reality from one’s ontology would make MWI an unnecessary addition to a perfectly good model called relational quantum mechanics.
This sounds like ‘shut up and calculate’ to me. After applying “shut up and calculate” to RQM the results are identical to the results of applying “shut up and calculate” to MWI, so there’s no reason to claim that you’re shutting up about RQM instead of shutting up about MWI or rather just shutting up about quantum mechanics in general, unless you’re not really shutting up. To put it another way, there is no such thing as shutting up about RQM or MWI, only shutting up about QM without any attempt to say what underlying state of affairs you are shutting up about.
If that’s not what you mean by denying that you intend to talk about a thingy that generates your experimental results and treating the results as primitive, please explain what that was supposed to say.
First, I think that we agree that ‘shut up and calculate’ reflects the current unfortunate state of affairs, where no other approach is more accurate despite nearly a century of trying. It postulates the Born rule (measurement results in projection onto an eigenstate), something each interpretation also postulates in one form or another, where the term “measurement” is generally understood as an interaction of a simple transparent ( = quantum) system with a complex opaque ( = classical) one. The term decoherence describes how this simple system becomes a part of the complex one it interacts with (and separates from it once the two stop interacting).
Now, I agree that
applying “shut up and calculate” to RQM the results are identical to the results of applying “shut up and calculate” to MWI, so there’s no reason to claim that you’re shutting up about RQM instead of shutting up about MWI or rather just shutting up about quantum mechanics in general, unless you’re not really shutting up.
And indeed I’m not shutting up, because the quantum-classical transition is a mystery to be solved, in a sense that one can hopefully construct a more accurate model (one that predicts new experimental results, not available in “shut up and calculate”).
The question is, which are the more promising avenues to build such a model on. RQM suggests a minimal step one has to take, while MWI boldly goes much further, postulating an uncountable (unless limited by the Planck scale) number of invisible new worlds appearing all the time everywhere, without explaining the mysterious splitting process in its own ontology (how does world splitting propagate? how do two spacelike-separated splits interact?).
Now, I am willing to concede that some day some extension of MWI may give a useful new testable prediction and thus will stop being an ‘I’. My point is that, unless you postulate reality as ontologically fundamental, MWI is not the smallest increment in modeling the observed phenomenon of the quantum-classical transition.
No approach is ever more accurate than ‘shut up and calculate’. The ‘Shut up and calculate’ version of Special Relativity, wherein we claim that Minkowski’s equations give us classical lengths but refuse to speculate about how this mysterious transition from Minkowski intervals to classical lengths is achieved, is just as accurate as Special Relativity. It’s just, well, frankly in denial about how the undermining of your intuition of a classical length is not a good reason to stick your fingers in your ears and go “Nah nah nah I’m not listening” with respect to Minkowski’s equations representing physical reality, the way they actually do. You believe this with respect to Special Relativity, and General Relativity, and every other “shut up and calculate” version of every physical theory from chemistry to nuclear engineering—that there’s no reason to shut up with respect to these other disciplines. I just believe it with respect to quantum mechanics too.
there’s no reason to shut up with respect to these other disciplines. I just believe it with respect to quantum mechanics too.
So do I, and have stated as much. Not sure where the misunderstanding is coming from.
You ought to, however, agree that QM is special: no other physical model has several dozens of interpretations, seriously discussed by physicists and philosophers alike. This is an undisputed experimental fact (about humans, not about QM).
What is so special about QM that inspires interpretations? Many other scientific models are just as counter-intuitive, yet there is little arguing about the underlying meaning of equations in General Relativity (not anymore, anyway) or in any other model. To use your own meta-trick, what is it so special about the Quantum theory (not about the quantum reality, if you believe in such) that inspires people to search for interpretations? Maybe if we answer this reasonably easy cognitive science question first, we can then proceed to productively discuss the merits of various interpretations.
You ought to, however, agree that QM is special: no other physical model has several dozens of interpretations, seriously discussed by physicists and philosophers alike. This is an undisputed experimental fact (about humans, not about QM).
Perhaps you mean the sheer quantity is so great. But there have been, an are, disputes about classical pysyics and relativity. Some of them have been resolved by just beiieving the theory and abandoning contrary intuitions. At one time, atoms were dismissed as a “mere calculational device”. Sound familiar?
Sure, every new theory is like that initially. But it only takes a short time for the experts to integrate the new weird ideas, like relative spacetime, or event horizons, or what have you. There is no agreement among the experts about the ontology of QM (beyond the undisputed assertion that head-in-the-sand “shut up and calculate” works just fine), and it’s been an unusually long time. Most agree that the wave function is, in some sense, “real”, but that’s as far as it goes. So the difference is qualitative, not just quantitative. Simply “trusting the SE” gives you nothing useful, as far as the measurement is concerned.
It doesn’t work “fine”, or at all, as an interpretation. It’s silent as to what it means.
There is no agreement among the experts about the ontology of QM (b
There are slowly emerging themes, such as the uselessness of trying to recover classical physics at the fundamental level, and the importance of decoherence.
Simply “trusting the SE” gives you nothing useful, as far as the measurement is concerned.
I don’t see what you mean by that. An interpretation that says “trust the SE” (I suppose you mean “reify the evolution of the WF according to the SE”) won’t give you anything results-wise, because its an interpretation
Most agree that the wave function is, in some sense, “real”, but that’s as far as it goes
Yeah. Note also that if you are observing a probability distribution, that doesn’t imply that something computed the probability density function. E.g. if you observe random dots positions of which follow Gaussian distribution, that could be count of heads in a long string of coin tosses rather than Universe Machine really squaring some real number, negating result, and calculating an exponent.
There’s certainly one obvious explanation which occurs to me. There being a copy of you in another universe seems more counterintuitive than needing to give up on measuring distances, so it’s getting more like the backlash and excuses that natural selection got, or that was wielded to preserve vitalism, as opposed to the case of Special Relativity. Also the simple answer seems to have been very hard to think of due to some wrong turns taken at the beginning, which would require a more complex account of human cognitive difficulty. But either way it doesn’t seem at all unnatural compared to backlash against the old Earth, natural selection, or other things that somebody thought was counterintuitive.
You need to realize that the “simple answer” isn’t so simple- no one has been able to use the axioms for many worlds to make an actual calculation of anything. By kicking away the Born amplitudes, they’ve kicked away the entire predictive structure of the theory. You are advocating that physicists give up the ability to make predictions!
Its even worse when you go to quantum field theories and try to make many worlds work- the bulk of the amplitude will be centered on “world’s” with undefined particle number.
On a related note, in MWI there is an uncountable number of worlds with the cat is in various stages of decay once the box is open. Is that weird or what.
You’re asking exactly what it is about a theory which speaks of unobserved cats as dwelling in existential limbo, that would inspire people to seek alternatives?
Read Elizier’s sequence on quantum mechanics. The cat does not collapse into a dead or alive state, the cat is dead, and another cat is alive. One of the many worlds has a dead cat, another has a live cat.
You have to remember that ‘interpretations’ of quantum mechanics are actually reformulations of quantum mechanics. Just as classical mechanics can be described by Newton’s laws, or one of several action principals (Hamilton/Jacobi,Maupertuis’ principle,etc), quantum mechanics has many formulations, each with their own axioms- there is nothing unique about quantum in this sense.
What IS unique about quantum mechanics is that so many interpretations are incomplete. Copenhagen is circular (to make sense of the measurement axiom, you need correspondence principle axiom, but classical needs to be a limit of quantum mechanical.) The measurement problem is a formal problem with the axioms of the theory.
Of course, many worlds is in an even worse position. No one has yet to effectively derive the Born amplitudes which means the interpretation is broken, there is no recipe to extract information about measurements from the theory.
Bohm might be an actual complete interpretation but its nearly impossible to extend the formalism to quantum field theories, Consistent histories is where I put my money- the homogenous history class operator seems potentially like the missing piece.
Consistent histories is where I put my money- the homogenous history class operator seems potentially like the missing piece.
Hmm, I could never make sense of the formalism of CH (it seems to rely on time-ordering and density matrices, neither of which inspire confidence, given that one expects a relativistically invariant evolution of a pure state), and the popular write-ups sound like advocacy.
Why would you expect relativistic invariance? The Schroedinger equation isn’t even Galilean invariant ( the mass comes through as a central charge, the probabilities are Galilean but not lorentz invariant)
The best reference for consistent histories is Bob Griffith’s excellent text (not to be confused with the other Griffiths)
Because I would expect a model that has a hope in hell of getting deeper toward the measurement problem than “shut up and calculate” to give a relativistically invariant account of the EPR, and because I expect such a model to be built on top of some form of QFT (as I mentioned in another reply, the number of particles is not conserved during the measurement, so the Hilbert space doesn’t cut it, you need something like a Fock space, second quantization etc.).
But the only way you are going to get relativistic invariance is to throw out the Schroedinger equation. The hope is that an interpretation makes it easier to move to QFT, NOT that a given interpretation will be Lorentz invariant (which is impossible, given the Schreodinger equation).
So far none of the interpretations of quantum are built on top of QFT, mostly because QFT isn’t yet formalized, its a hodge podge of heuristics that gets the right answer. The handful of axiomatic field theories don’t actually describe physical systems. Some people have a pipe dream that finding better quantum axioms will point the way toward better QFT axioms, but I’m not in that camp.
The SE should be a non-relativistic limit of whatever model is the next step. Not sure if it requires a formalization of QFT, it just needs to make decent predictions. Physicists are not overly picky. As long as it’s reasonably self-consistent. Or not even. As long as it helps you calculate something new and interesting unambiguously.
QFT IS the obvious next-step, but the reason people play with standard quantum formulations instead of trying to work in the context of QFT and ‘push the interpretation down’ is that QFT isn’t yet on firm footing.
Hmmm… apparently making QM play nice with Special Relativity isn’t quite as simple as using the Dirac equation instead of the Schrodinger equation, because the Dirac equation has negative energy solutions, and making it impossible for electrons to “decay” into these negative energy states requires kludges.
Quantized wave function solves the negative energy problem, at the expense of introducing a bunch of infinities, some of which are easier to work around (renormalize) than others. For example, there is no way to usefully quantize gravitational field.
This isn’t quite true. What solves the problem isn’t quantizing wave functions, its insisting that positive energy propagate forward in time- i.e. picking the Feynman propagator (instead of the retarded or advanced propagator, etc) that solves the problem. You still have to make a division between the positive energy and negative energy pole in the propagator (unfortunately, all observers can’t agree on which states have positive and what states have negative energy, which is the basis of the Unruh effect- two observers accelerating relative two each other cannot agree on particle number).
Also, its a misconception that you can’t simply quantize the gravitational field. If you treat GR as an effective theory you can make calculations of arbitrary accuracy with a finite number of measured parameters, with just canonical quantization. The standard model is ALSO not a renormalizable field theory (not since the addition of neutrino masses). Weinberg has recently tried to make the argument that maybe GR + canonical quantization (i.e. gravity is asymptotically safe)
Thanks for the corrections, my area is mostly classical GR, not Standard Model physics. And a good point on the Unruh effect. As for quantizing GR, note the “useful” disclaimer. I am deeply suspicious of any technique that treats GR as an effective field theory on some background spacetime, as it throws away the whole reason why GR is unlike any other field theory. Weinberg is especially prone to to doing that, so, while I respect anything he does in HEP, I don’t put much stock into his GR-related efforts. If anything, I expect the progress to come from the entropic gravity crowd, with nothing to quantize.
When I worked in physics I did perturbative QCD stuff in graduate school and then effective theories for medium energy scattering, and finally axiomatic quantum field theories as a postdoc before I left physics for a field with actual employment opportunities (statistics/big data stuff).
But why shouldn’t GR be treated as just another field theory? It certainly has the structure of a field theory. Feynman and then Weinberg managed to show that GR is THE self-consistent, massless spin-2 field theory- so to that extent it IS just another field theory.
Treating GR as an effective theory works. I doubt that the theory is asymptotically safe, but for an effective theory, who cares? Why should we treat the matter part of the action any differently than we treat the spacetime piece of the action?
But why shouldn’t GR be treated as just another field theory? It certainly has the structure of a field theory.
That’s a separate discussion, but let me just note that the action would have to be summed not just over all paths (in which spacetime?), but also over all possible (and maybe impossible) topologies, as well.
Oh. The Schroedinger equation says nothing about the measurement. In all likelihood, a theory of quantum to classical transition would require at least some elements of QFT, as the measurement, as an irreversible process, results in emission of photons, phonons or some other real or quasi-particles. Thus you have to go from the Hilbert space to some sort of Fock space, since the number of particles is not conserved.
Oh. The Schroedinger equation says nothing about the measurement.
Measurement of what? I was responding to your comment that MWI does not explain splitting ontologically In fact the ontology is just “the territory is just what a SWE of the universe says it is”.
After applying “shut up and calculate” to RQM the results are identical to the results of applying “shut up and calculate” to MWI,
This isn’t actually correct- there is not a “shut-up-and-calculate” version of many world’s- without the born probabilities you can’t calculate anything. Maybe someday Deutsch,Wallace or some other enterprising many worlds advocate will show us a way to do calculations without the measurement postulate. That hasn’t happened yet, so many worlds does not let us calculate. As far as I know, this inability to calculate is the primary reason physicists reject it.
So there is no need to use the term “real” except maybe as a shorthand for the territory in the map-territory model (which is an oft useful model, but only a model).
FYI, “territory” means “territory”, not map.
. On the other hand, you can probably agree that removing objective reality from one’s ontology would make MWI an unnecessary addition to a perfectly good model called relational quantum mechanics.
Model of what? If you subtract the ontology from an interpretation, what are you left with knowledge of?
In this and your previous comment, you write as though as though rQM is a different formalism, a different theory,
leading to different results. It isn’t.
On the other hand, you can probably agree that removing objective reality from one’s ontology would make MWI an unnecessary addition to a perfectly good model called relational quantum mechanics.
In principle rQM could suggest a different mental picture, and one better capable of inspiring further models that will make successful predictions. (Assuming shminux’s bizarre positivist-like approach admits the existence of mental pictures.) The “better capable” part seems unlikely to this layman. Feynman’s path integrals have a very MWI-like feel to me, and Feynman himself shared that impression when he wrote the book with Hibbs. But since paths that go back in time seem to pose a problem for Eliezer’s causality-based approach, perhaps shminux has some reason for preferring rQM that I don’t see. I’m still betting against it.
To prevent the other worlds from being real enough to have people inside them,
In RQM, there are no other worlds in the MWI sense. MWI allows observers to make contradictory measurements, such as |up> and |down> and then tries to remove the contradiction by indexing each measurement to its own world. rQM does not allow observers to make contradictory measurements, so there is no need to wish away worlds, because there was never a need to introduce them.
“However, the comparison does not lead to contradiction because the comparison is itself a physical process that must be understood in the context of quantum mechanics. Indeed, O′ can physically interact with the electron and then with the l.e.d. (or, equivalently, the other way around). If, for instance, he finds the spin of the electron up, quantum mechanics predicts that he will then consistently find the l.e.d. on (because in the first measurement the state of the composite system collapses on its [spin up/l.e.d. on] component). That is, the multiplicity of accounts leads to no contradiction precisely because the comparison between different accounts can only be a physical quantum interaction. This internal self-consistency of the quantum formalism is general, and it is perhaps its most remarkable aspect. This self consistency is taken in relational quantum mechanics as a strong indication of the relational nature of the world.”—SEP
we need to insist very loudly that this whole diagram of what is ‘real relative to’ other things, is not itself real. I
rQM has an ontology. It’s an ontology of relations. rQM denies state—non-relational infmoration. rQM
does not need to say anything is real relativee to anything else—only that some information is not
available to some systems.
Also, since only individual points in configuration space allow one particle to say that another particle is in an exact position and have this be ‘real’, if you take a blob of amplitude large enough to contain a person’s causal process, you will find that elements of a person disagree about what is real relative to them...
Basic question I probably should’ve asked earlier: Does shminux::RQM entail not-MWI?
If the answer is “no” then shminux::RQM is indeed plausibly shutting up, since by adding further information we can arrive at MWI. I plead guilty to failing to ask this question, note that shminux failed to volunteer the information, and finally plead that I think most RQMers would claim that theirs is an alternative to MWI.
By “state” I mean information physically embodied in a non relational way.
By “universal” I mean the maximal ensemble: universe, multiverse, cosmos, whatever.
(I think you might have been hearing
“the universe does not have a state” as “nothing is real” or “nothing is out there”. There is something out there, but it is not anything that can even be conceived as existing in a classical view-from nowhere
style. “Following the idea of relational networks above, an RQM-oriented cosmology would have to account for the universe as a set of partial systems providing descriptions of one another. The exact nature of such a construction remains an open question.”—WP)
There is something out there, but it is not anything that can even be conceived as existing in a classical view-from nowhere style.
To the extent that this seems to be meaningful at all, this would seem to imply that not only is the universe mysterious and ineffable, it’s also uncomputable—since anything you can calculate in a turing machine (or even a few kinds of hypercomputers) can be “conceived of as existing in a classical view-from nowhere style” (it’s just a list of memory states, together with the program). That’s a lot of complexity just to be able to deny the idea of objective reality!
Well, general relativity, while descriptively very simple, is awfully complex if you measure complexity by the length of a simulator program, so perhaps in the interest of consistency you should join the anti Einsteinian crank camp first.
Those incredibly successful theories were based entirely on the notion of complexity in a more abstract language where things like having no outside view and no absolute spacetime are simpler than having outside view.
Nice non-sequitor you’ve got there. Newtonian mechanics is simpler than general relativity. It also happens to be wrong, so there’s no point going back to it. But GR is not even that complex relative to a theory that claims that the cosmos is an ineffable mystery—GR has well defined equations, and takes place in a fixed riemannian manifold. You can in fact freely talk about the objective spacetime location of events in GR, using whatever coordinate system you like. This is because it is a good theory.
Actually GR shows the advantage of having an outside view and being able to fit things into a comprehensive picture. If my graduate GR course had refused to talk about manifolds and tensors and insisted that you could only measure “lengths relative to specific observers”, and shown us a bunch of arcane equations for converting measurements between different observers’ realties, I imagine it wouldn’t have been half as fun.
(Although the fact that certain solutions to the GR equations allow closed timelike curves and thereby certain kinds of hypercomputation is less than ideal—hopefully future unified theories will conspire to eliminate such shenanigens.)
The point is that absence of the absolute time really gets in the way of implementing a naive simulator, the sort that just updates per timestep. Furthermore, there is no preferred coordinate frame in GR, but there is a preferred coordinate frame in a simulator.
Ultimately, a Turing machine is highly arbitrary and comes with a complex structure, privileging implementations that fit into that structure, over conceptually simpler theories which do not.
The point is that absence of the absolute time really gets in the way of implementing a naive simulator, the sort that just updates per timestep.
But it’s no problem for a simulator that derives a proof of the solution to the equations, such as a SAT solver. Linear time is not neccesary for simulation, just easier for humans to grasp.
Furthermore, there is no preferred coordinate frame in GR, but there is a preferred coordinate frame in a simulator.
Even if this is true, if the simulation is correct, the existence of such a preferred reference frame is unobservable to any observer inside the simulation, and therefore makes no difference. A simulation that does GR calculations in a particular coordinate system, still does GR calculations.
How are you even going to do those calculations exactly? If you approximate, itll be measurable.
Ultimately there is this minimal descriptive complexity approach that yields things like GR based on assumptions of as few absolutes as possible, and then theres this minimal complexity of implementation on a very specific machine approach, which would yield a lot of false predictions had anybody bothered to try to use it as the measurements improved.
edit: also under an ontology where invariants and relationals with no absolutes are not simpler its awfully strange to find oneself in an universe wheich looks like ours. The way i see it, there are better and worse ways to assign priors, and if you keep making observations with very low priors under one assignment but not other, you should consider the prioes scheme where you keep predicting wrong to be worse.
You seem to think I find GR and quantum mechanics strange, or something. No, it’s perfectly normal to live in a universe with no newtonian ideas of “fixed distance”. GR does not have “no absolutes”, it has plenty of absolutes. It has a fixed riemannian manifold with a fixed metric tensor (that can be decomposed into components in any coordinate system you like).
A model like GR’s is exactly the kind that I would like to see for quantum mechanics—one where it’s perfectly clear what the universe is and what equations apply to it, and ideally an explanation of how we observers arise within it. For this position, MWI seems to be the only serious contender, followed perhaps by objective collapse, although the latter seems unlikely.
But wouldn’t GR still fall prey to the same ‘hard to implement on a TM’ argument? Also, one could define a relational model of computation which does not permit an outside view (indeed the relational QM is such a thing), by the way. It’s not clear which model of computation would be more complex.
With regards to the objective collapse, I recall reading some fairly recent paper regarding the impact of slight non-linearities in QFT on MWI-like superpositions, with conclusion that slight non-linearities would lead to objective collapse which occurs when the superposition is too massive. Collapse does seem unlikely on it’s own—if you view it as some nasty inelegant addition, but if it arises as a product of a slight non linearity, it seems entirely reasonable, especially if the non-linearity exists as a part of quantum gravity. It has been historically common that a linear relationship would be found non-linear as measurements improve. (The linear is simplest, but the non-linear models are many—one specific non-linear model is apriori less likely than a linear one, but the totality of non-linear models is not).
Without collapse you still have the open question of Born’s law, by the way. There been a suggestion to count the distinct observers somehow, but it seems to me that this wouldn’t work right if part of the wavefunction is beamed into the space (and thus doesn’t participate in decoherence of an observer), albeit I never seen a concrete proposal as to how the observers should be counted...
And back to the Turing machines, they can’t do true real numbers, so any physics as we know it can only be approximated, and it’s not at all clear what an approximate MWI should look like.
QM is computable. rQM doesnt change that. If an observer wants to do quantum cosmology, they can observe the universe, not from nowhere, but from their perspective, store observations and compute with them. Map-wise, nothing much has changed.
Territory-wise, it looks like the universe can’t be a (classical) computer. Is that a problem?
I can see how your conclusion follows from that assumption, but the assumption is as strange as the conclusion. Ideally, an argument should proceed from plausible premises.
“The universe is not anything that can even be conceived as existing in a classical view-from nowhere style” also means that the universe can’t be modeled on a computer (classical or otherwise). From a complexity theory point of view, this makes the rQM cosmology an exceptionally bad one, since you must have to add something uncomputable to QM to make this true (if there is even any logical model that makes this true at all).
The fact that you can still computably model a specific observer’s subjective perspective isn’t really relevant.
Out of the box, a classical computer doesn’t represent the ontology of rQM because all information has an observer-independent representation, but s software layer can hide literal representations in the way a
LISP gensym does. Uncomputability is not required.
In any case, classical computability isn’t a good index of complexity. It’s an index of how close something is to a classical computer. Problems are harder or easier to solve according to the technology used to solve them. That’s why people don’t write device drivers in LISP.
I think what EY is saying is that, rQM entails MWI, and only an extra layer of epistemological interpretation denies
the reality to the worlds. ie, he thinks MWI says “QM implies many worlds” whereas rQM says “QM implies many worlds, but we should just ignore that”. (One man’s ontological minimalism is another man’s epistemological maximism).
But that’s all based on a sequence of misunderstanings. rQM doesn’t allow observers to make contradictory observations AND there is no observer-indepenent world-state in rQM, so there are no multiple world-states in rQM.
A very quick but sufficient refutation is that the same math taken as a description of an objectively existing causal process gives us MWI, hence there is no reason to complicate our epistemology beyond this
Or MWI could be said to be complicating the ontology unnecessarily. To be sure, rQM answers epistemologically some questions that MWI answers ontologically, but that isn’t obviously a Bad Thing. A realistitc interpretation of the WF is a postive metaphyscial assumption, not some neutral
default. A realistic quantum state of the universe is a further assumption that buys problems other
interpretations don’t have.
To the extent that it is worth replying to such things it is worth replying well. A terse reply will tend to (in my personal experience) and in this caseseems to have set you up for further sniping and will typically result in undermining your position independently of actual merit. I expect the net effect of this engagement to be (admittedly trivial) undermining of the credibility of your MWI lesson.
My own interest is not in the QM but instead that several (relatively) subtle rhetorical techniques related to intellectual and moral high ground manipulation and asymmetric application of norms that I would like to see less of are in fact being rewarded with success and approval. ie. You are feeding the .
Some people consider it a good form to back up your accusations with examples, facts and proofs, even when discussing topics dear to their hearts. Give it a try some time.
Okay. Name a state of affairs that could correspond to RQM without being MWI.
PS: Whenever you say that something is ‘true relative to’ B, please replace it with a state of affairs and a description of B’s truth-predicate over possible states of affairs.
First, the onus is on you to show that the above is both relevant to your claim of “bad amateur incoherent epistemology” and that there is no such state of affairs, since it’s your claim that RQM is just a word game.
But, to indulge you, here is one example:
Whereas in MWI, unless I misunderstand it, each interaction (after the decoherence has ran its course) irrevocably splits the world into “eigenworlds” of the interaction, and there is no observer for which the world is as yet unsplit:
P.S. Just to make it clear, I’m not an adherent of RQM, not until and unless it gives new testable predictions not available without it. Same applies to all other interpretations. I’m simply pointing out that MWI is not the only game in town.
So in MWI, this presumably arises when e.g. you’ve got 3 possible states of X, and version A of you decoheres with state 1 while version B is entangled with the superposition of 2+3. In RQM this is presumably described sagely as X being definitely-1 relative to A while X is 2+3 relative to B. Then if you ask them whether or not this statement itself is a true, objective state of affairs (where a ‘yes’ answer immediately yields MWI) there’s a bunch of hemming and hawing.
Ignoring your unhelpful sarcastic derision… You should know better, really.
Take an EPR experiment with spatially separated observers A and B. If A measures a state of a singlet and the world is split into Aup and Adown, when does B split in this world, according to MWI?
In RQM, it does not until it measures its own half of the singlet, which can be before of after A in a given frame. Its model of A is a superposition until A and B meet up and compare results (another interaction). The outcome depends on whether A actually measured anything and if so, in which basis. None of this is known until A and B interact.
I know I’m late to the party, but I couldn’t help but notice that this interesting question hadn’t been answered (here, at least). So here it is: as far as I know, B ‘splits’ immediately, but this in an unphysical question.
In MWI we would have observers A and B, who could observe Aup or Adown and Bup or Bdown (and start in |Aunknown> and |Bunknown> before measuring) respectively. If we write |PAup> and |PAdown> for the wavefunctions corresponding to the particle near observer A being in the up resp. down states, and introduce similar notation for the particle near observer B, then the initial configuration is:
|Aunkown> |Bunknown> (|PAup> |PBdown> - |PAdown> |PBup>) / \sqrt(2)
Now if we let person A measure the particle the complete wavefunction changes to:
|Bunknown> (|Aup> |PAup> |PBdown> - |Adown> |PAdown> * |PBup>) / \sqrt(2)
Important is that this is a local change to the wavefunction, what happened here is merely that A measured the particle near A. Since observer A is a macroscopic object we would expect the two branches of the wavefunction above (separated by the minus sign) to be quite far apart in configuration space, so the worlds have definitely split here. But B still isn’t correlated to any particular branch: from the point of A, person B is now in a superposition. In particular observer B doesn’t notice anything from this splitting—as we would expect (splitting being a local process and observers A and B being far apart). This is also why I called the question as to when B splits ‘unphysical’ above, since it is a property known only locally at A, and in fact the answer to this question wouldn’t change any of B’s anticipations.
This might seem a lot like RQM, and that is because RQM happens to get the answer to this question right. The problem with RQM (at least, the problem I ran into while reading the paper) was that the author claims that measurements are ontologically fundamental, and wavefunctions are only a mathematical tool. This seems to confuse the map with the territory: if wavefunctions are only part of our maps, what are they maps of? Also if wavefunctions aren’t part of the territory an explanation is needed for the observation that different observers can get the same results when measuring a system, i.e. an explanation is needed for the fact that all observations are consistent. It seems unnecessarily complicated to demand that wavefunctions aren’t real, and then separately explain why all observations are consistent as they would have been if the wavefunction were real.
I think this is what Eliezer might have meant with
RQM seems to assert precisely what MWI asserts, except that it denies the existence of objective reality, and then needs a completely new and different explanation for the consistency between measurements by different observers. I found the insults hurled at RQM by Eliezer disrespectful but, on close inspection, well-deserved. Denying reality doesn’t seem like a good property for a theory of physics to have.
Denying reality, and denying the reality of the .WF aren’t the same thing.
Suppose RQM is only doing the latter. Then, you have observers who are observing a consistent objective reality, and mapping it accurately with WFs, then their maps will agree. But that doesn’t mean the terrain had all the features of the map. Accuracy is a weaker condition than identity.
Consider an analogy with relativity. There is a an objective terrain of objects with locations and momenta, but to represent it an observer must supply a coordinate system which is not part of the territory.
I am starting to get confused by RQM, I really did not get the impression that this is what was claimed. But suppose it is.
To stick with the analogy of relativity, great efforts have been made there to ensure that all important physical formulas are Lorentz-invariant, i.e. do not depend on these artificial coordinate system. In an important sense the system does not depend on your coordinates, although for actual calculations (on a computer or something) such coordinates are needed. So while (General) Relativity indeed satisfies the last line you gave, it also explains exactly how (un)necessary such coordinate systems are, and explains exactly what can be expected to be shown without choosing a coordinate system.
Back to RQM. Here this important explanation of which observables are still independent of the observer(/initial frame) and which formulas are universal are painfully absent. It seems that RQM as stated above is more of an anti-prediction - we accept that each observer can accurately describe his experimental outcomes using QM, and different observers agree with eachother because they are looking at the same territory, hence they should get matching maps, and finally we reject the idea that these observer-dependent representations can be combined to one global representation.
Again I stuggle to combine this method of thought with the fact that humans themselves are made of atoms. If we assume that wavefunctions are only very useful tools for predicting the outcomes of experiments, but the actual territory is not made of something that would be accurately represented by a wavefunction, I run into two immediate problems:
1) In order to make this belief pay rent I would like to know what sort of thing an accurate description of the universe would look like, according to RQM. In other words, where should we begin searching for maps of a territory containing observers that make accurate maps with QM that cannot be combined to a global map?
2) What experiment could we do to distinguish between RQM and for example MWI? If indeed multiple observers automatically get agreeing QM maps by virtue of looking at the same territory, then what experiment will distinguish between a set of knitted-together QM maps and an RQM map as proposed by my first question? Mind you, such experiments might well exist (QM has trumped non-mathy philosophy without much trouble in the past), I just have a hard time thinking of one. And if there is no observable difference, then why would e favour RQM over the stiched-together map (which is claiming that QM is universal, which should make it simpler than having local partial QM with some other way of extending this beyond our observations)?
My apologies for creating such long replies, summarizing the above is hard. For what it’s worth I’d like to remark that your comment has made me update in favour of RQM by quite a bit (although I still find it unlikely) - before your comment I thought that RQM was some stubborn refusal to admid that QM might be universal, thereby violating Occam’s Razor, but when seen as an anti-prediction it seems sorta-plausible (although useless?).
By the way, your complaint here...
..is echoed by no less than Jaynes:-
http://arxiv.org/abs/1206.6024
RQM may not end in an I, but it is still an interptetation.
What the I in MWI means is that it is an interpretation, not a theory, and therefore neither offers new mathematical apparatus, nor testable predictions.
Not exactly, RQM objects to observer independent state. You can have global state, providing it is from the perspective of a Test Observer, and you can presumably stitch multiple maps into such a picture.
Or perhaps you mean that if you could write state in a manifestly basis-free way, you would no longer need to insist on an observer? I’m not sure. A lot of people are concerned about the apparent disappearance of the world in RQM. There seems to be a realistic and a non realistic version of RQM. Rovellis version was not realistic, but some have added an ontology of relations.
its more of a should not than a cannot.
Well, we can’t distinguish between MWI and CI, either.
Just because something is called an ‘interpretation’ does not mean it doesn’t have testable predictions. For example, macroscopic superposition discerns between CI and MWI (although CI keeps changing its definition of ‘macroscopic’).
I notice that I am getting confused again. Is RQM trying to say that reality via some unknown process the universe produces results to measurements, and we use wavefunctions as something like an interpolation tool to account for those observations, but different observations lead to different inferences and hence to different wavefunctions?
There is nothing in Copenhagen that forbids macroscopic superposition. The experimental results of macroscopic superposition in SQUIDs are usually calculated in terms of copenhagen (as are almost all experimental results).
That’s mainly because Copenhagen never specified macrsoscopic …but the idea of an unequivocal “cut” was at the back of a lot of copenhagenists minds, and it has been eaten away by various things over the years.
So there are obviously a lot of different things you could mean by “Copenhagen” or “in the back of a lot of copenhagenist minds” but the way it’s usually used by physicists nowadays is to mean “the Von Neumann axioms” because that is what is in 90+% of the textbooks.
The von Neumann axioms aren’t self interpreting .
Physicists are trained to understand things in terms of mathematical formalisms and experimental results, but that falls over when dealing with interpretation. Interpretations canot be settled empirically, by definition,, and formulae are not self interpreting.
My point was only that nothing in the axioms prevents macroscopic superposition.
For some values of “wavefunction”, you are going to have different observers writing different wavefunctions just because they are using different bases...that’s a practical issue that’s still true if you believe in, but cannot access, theOne True Basis, like a many worlder.
How are you defining territory here? If the territory is ‘reality’ the only place where quantum mechanics connects to reality is when it tells us the outcome of measurements. We don’t observe the wavefunction directly, we measure observables.
I think the challenge of MWI is to make the probabilities a natural result of the theory, and there has been a fair amount of active research trying and failing to do this. RQM side steps this by saying “the observables are the thing, the wavefunction is just a map, not territory.”
See my reply to TheAncientGeek, I think it covers most of my thoughts on this matter. I don’t think that your second paragraph captures the difference between RQM and MWI—the probabilities seem to be just as arbitrary in RQM as they are in any other interpretation. RQM gets some points by saying “Of course it’s partially arbitrary, they’re just maps people made that overfit to reality!”, but it then fails to explain exactly which parts are overfitting, or where/if we would expect this process to go wrong.
To my very limited understanding, most of QM in general is completely unnatural as a theory from a purely mathematical point of view. If that is actually so, what precisely do you mean by “natural result of the theory”?
Actually most of it is quite natural, QM is the most obvious extension that you get when you try to extend the concept of ‘probability’ to complex numbers, and there are some suggestions why you would want to do this (I think the most famous/commonly found explanation is that we want ‘smooth’ operators, for example if turning around is an operator there should also be an operator describing ‘half of turning around’, and another for ‘1/3 of turning around’ etc., which for mathematical reasons immediately gives you complex numbers (try flipping a sign in two identical steps, this is the same as multiplying by i)).
To my best knowledge the question of why we use wavefunctions is a chicken-and-the-egg type question - we want square integrable wavefunctions because those are the solution of Schrodingers equation, we want Schrodingers equation because it is (almost) the most general Hermitian time-evolution operator, time-evolution operators should be Hermitian because that is the only way to preserve unitarity and unitarity should be preserved because then the two-norm of the wavefunction can be interpreted as a probability. We’ve made a full circle.
As for your second question: I think a ‘natural part of the theory’ is something that Occam doesn’t frown upon - i.e. if the theory with the extra part takes a far shorter description than the description of the initial theory plus the description of the extra part. Informally, something is ‘a natural result of the theory’ if somehow the description for the added result is somehow already partly specified by the theory.
Again my apologies for writing such long answers to short questions.
Thank you, that was certainly insightful. I see now that it is some kind of natural extension of relevant concepts.
I have been told however that from a formal point of view a lot of QM (maybe they were talking only about QED) makes no sense whatsoever and the only reason why the theory works is because many of the objects coming up have been redefined so as to make the theory work. I don’t really know to what extent this is true, but if so I would still consider it a somewhat unnatural theory.
I’ve since decided to not argue about what is and isn’t in the territory, given how I no longer believe in the territory.
I confess I’m not quite clear on your question. Local processes proceed locally with invariant states of distant entanglement. Just suppose that the global wavefunction is an objective fact which entails all of RQM’s statements via the obvious truth-condition, and there you go.
I confess I’m not quite clear on your answer.
Not sure what this means, at least not past “local processes proceed locally”, which is certainly uncontroversial, if you mean to say that interaction is limited to light speed.
“an objective fact”? As in a map from something to C? If so, what is that something? Some branching multiverse? Or what do you mean by an objective fact?
You lost me here, sorry.
Tell me what the basis is, and where it comes from, and I will...
What’s B? A many-worlds counterpart of A? Another observer enitrely?
In rQM, if one observer measures X to be in state 1, no other observer can disagree (How may times do I have to point that out?). But they can be uiniformed as to what state it is—ie it is superposed for them.
By definition, interpretations don’t give testable predictions. Theories give testable predictions.
EDIT: having said that, rQM ontology, where information is in relations, not in relata, predicts a feature of the formalism—that when you combine Hilbert spaces, what you have is a product not a sum. That is important for understanding the advantages of quantum computation.
Definitions can be wrong.
I understand that well-meaning physics professor may have once told you that. However the various quantum mechanics interpretations do in fact pre-suppose different underlying mechanisms, and therefore result in different predictions in obscure corner cases. For example, reversible measurement of quantum phenomenon results in different probabilities on the return path in many-worlds vs the Copenhagen interpretation. (Unfortunately we lack the capability at this time to make fully reversible experimental aparatus at this scale.)
A real testable difference between QM interpretations is a Nobel-worthy Big Deal. I doubt it will be coming.
Actually, Nobel does not begin to cover it, whether it would be awarded or not (even J.S. Bell didn’t get one, though he was nominated the year he died). Showing experimentally that, say, there is an objective collapse mechanism of some sort would probably be the biggest deal since the invention of QM.
And even just formally applying all the complexity stuff that is alluded to in the sequences, to the question of QM interpretation, would be a rather notable deed.
There are real testable differences:
http://www.hedweb.com/manworld.htm#unique
That page lists three ways in which MWI differs from the Copenhagen interpretation.
One has to two with further constraints that MWI puts on the grand unified theory: namely that gravity must be quantized. If it turns out that gravity is not quantized, that would be strong evidence against the basic MWI explanation.
The second has to do with testable predictions which could be made if it turns out that linearity is violated. Linearity is highly verified, but perhaps it does break down at high energies, in which case it could be used to communicate between or simply observe other Everett branches.
Finally, there’s an actual testable prediction: make a reversible device to measure electron spin. Measure one axis to prepare the electron. Measure an orthogonal axis, then reverse that measurement. Finally measure again on the first axis. You’ve lost your recording of the 2nd measurement, but in Copenhagen the 1st and 3rd should agree 50% of the time by random chance, because there was an intermediate collapse, whereas in MWI they agree 100% of the time, because the physical process was fully reversed, bringing the branches back into coherence.
We just lack the capability to make such a device, unfortunately. But feel free to do so and win that Nobel prize.
But such device is not physically realizable, as it would involve reversing the thermodynamic arrow of time.
? What aspect of measuring an electron’s spin is not reversible? Physics at this scale is entirely reversible.
You can reversibly entangle an electron’s spin to the state of some other small quantum system, that’s not questioned by any interpretation of QM, but unless this entanglement propagates to the point of producing a macroscopic effect, it is not considered a measurement.
It’s even worse than that. Zurek’s einselection relies on decoherence to get rid of non-eigenstates, and reversibility is necessarily lost in this (MWI-compatible) model of measurement. There is no size restriction, but the measurement apparatus (including the observer looking at it) must necessarily leak information to the environment to work as a detector. Thus a reversible computation would not be classically detectable.
Which is why the experiment as described in the link I provided requires an artificial intelligence running on a reversible computing substrate to perform the experiment in order to provide the macroscopic effect.
That is, it would require inverting the thermodynamic arrow of time.
If you define a measurement as an the creation of a (FAPP) irreversible record....then, no.
Indeed. Truly reversing the measurement would involve also forgetting what the result of the measurement was, and Copenhagenists would claim this forgotten intermediate result does not count as a “measurement” in the sense of something that (supposedly) collapses the wave function.
Easy: no observer-independent state. No contradictory observations. No basis problem.
(Of course that isn’t an empirical expectation-predicting difference, and of course there is no reason it should be, since interpretations are not theories).
“Quantum state is in the territory” versus “state is just model”
“Universal quantum state is a coherent notion” versus “universal quantum state cannot be correctly defined”
“We need to get a universal basis from somewhere” versus “we don’t”
Etc, etc.
That is not a state of affairs, it is a list of questions you aren’t trying to answer. I am asking for a concrete description of how the universe could possibly be that would correspond to RQM being true and MWI being false.
It isn’t a list of questions, it is a list of assertions about state of the state of the universe made by rQM paired with differing ones made by MWI. If you can spot the MWI ones, you can figout the rQM ones. If you can’t, Ill pull out the rQM ones:
There is no universal state.
There is universal basis.
State is a observer’s map,
“Collapse” is receipt of information by an observer, not an objective process.
There is an ontology of relations.
Observers cannot disagree about information, but can have different levels of information.
“There is no universal state.” is barely an assertion about the state of the universe. Okay, there’s no “universal state”. What is there instead? I can’t write a simulation of a universe with “no universal state” without further information.
Are you having trouble understanding the published materials as well?
I am disappointed that this move was validated with compliance.
I thought it had enough justice to comply with.
To be fair, I should have pointed out what I meant, and I didn’t:
That’s three adjectives in a row with a negative connotation. In a reasonably rational discourse one would expect some comparative discussion of epistemology in both interpretations and pointing relative strength and weaknesses of each.
This requires showing that RQM is a subset of MWI, so it’s a repetition of the original statement, only with some extra derision.
How would you phrase it in a neutral way?
That’s just insults, surely not the best way to get your point across.
To be fair, my reply had some of the same faults:
This was quite unfair of me. Most of your writings do have a good number of “examples, facts and proofs”, as well as eloquence and lucidity. The problem arises when you get annoyed or frustrated, which is only human.
No, I understood what you meant. Otherwise I wouldn’t have taken a shot at complying. Really RQM deserves its own post carefully dissecting it, but I may not have time to write it.
A very quick but sufficient refutation is that the same math taken as a description of an objectively existing causal process gives us MWI, hence there is no reason to complicate our epistemology beyond this to try to represent RQM, even if RQM could somehow be made coherent within a more complicated ontology that ascribed primitive descriptiveness to ideas like ‘true relative to’. MWI works, and RQM doesn’t add anything over MWI (not even Born probabilities).
rQM subtracts objective state and therefore does not have MWI’s basis problem.
I tend to agree with you. As I said before, to me RQM to MWI is what “shut up and calculate” is to Copenhagen. Unfortunately, I have a feeling that I am missing some important point Eliezer is making (he tends to make important points, in my experience). For example, in the statement
I do not understand where, in his opinion, RQM adds a complication to (what?) epistemology.
Instead of having causal processes which are real, we now need causal processes which are ‘real relative to’ other causal processes. To prevent the other worlds from being real enough to have people inside them, we need to insist very loudly that this whole diagram of what is ‘real relative to’ other things, is not itself real. I am not clear on how this loud insistence can be accomplished. Also, since only individual points in configuration space allow one particle to say that another particle is in an exact position and have this be ‘real’, if you take a blob of amplitude large enough to contain a person’s causal process, you will find that elements of a person disagree about what is real relative to them...
...and all these complications are just pointless, there’s no need for our ontology to have a notion like ‘real relative to’ instead of just talking about causes and effects. RQM doesn’t even get any closer to explaining the Born probabilities, so why bother? It’s exactly like a version of Special Relativity that insists on talking about ‘real lengths relative to’ instead of observer-invariant Minkowskian spacetime.
My best guess at the lack of agreement here is the difference in yours and mine ontology at a rather basic level. Specifically, your ontology seems to be
whereas mine does not have “the thingy that determines my experimental results” and treats these results as primitive instead. As a consequence, everything is a model (“belief”), and good models predict experimental results better. So there is no need to use the term “real” except maybe as a shorthand for the territory in the map-territory model (which is an oft useful model, but only a model).
You can probably appreciate that this ontological difference makes statements like
where the term “real” is repeated multiple times, lose meaning if one only cares about making accurate models.
Now, I cannot rule out that your ontology is better than my ontology in some sense of the term “better” acceptable to me, but that would be a discussion to be had first, before going into the interpretational problems of Quantum Mechanics. I can certainly see how adopting your ontology of objective reality may lead one to dislike RQM, which evades pinning down what reality is in the RQM view. On the other hand, you can probably agree that removing objective reality from one’s ontology would make MWI an unnecessary addition to a perfectly good model called relational quantum mechanics.
This sounds like ‘shut up and calculate’ to me. After applying “shut up and calculate” to RQM the results are identical to the results of applying “shut up and calculate” to MWI, so there’s no reason to claim that you’re shutting up about RQM instead of shutting up about MWI or rather just shutting up about quantum mechanics in general, unless you’re not really shutting up. To put it another way, there is no such thing as shutting up about RQM or MWI, only shutting up about QM without any attempt to say what underlying state of affairs you are shutting up about.
If that’s not what you mean by denying that you intend to talk about a thingy that generates your experimental results and treating the results as primitive, please explain what that was supposed to say.
First, I think that we agree that ‘shut up and calculate’ reflects the current unfortunate state of affairs, where no other approach is more accurate despite nearly a century of trying. It postulates the Born rule (measurement results in projection onto an eigenstate), something each interpretation also postulates in one form or another, where the term “measurement” is generally understood as an interaction of a simple transparent ( = quantum) system with a complex opaque ( = classical) one. The term decoherence describes how this simple system becomes a part of the complex one it interacts with (and separates from it once the two stop interacting).
Now, I agree that
And indeed I’m not shutting up, because the quantum-classical transition is a mystery to be solved, in a sense that one can hopefully construct a more accurate model (one that predicts new experimental results, not available in “shut up and calculate”).
The question is, which are the more promising avenues to build such a model on. RQM suggests a minimal step one has to take, while MWI boldly goes much further, postulating an uncountable (unless limited by the Planck scale) number of invisible new worlds appearing all the time everywhere, without explaining the mysterious splitting process in its own ontology (how does world splitting propagate? how do two spacelike-separated splits interact?).
Now, I am willing to concede that some day some extension of MWI may give a useful new testable prediction and thus will stop being an ‘I’. My point is that, unless you postulate reality as ontologically fundamental, MWI is not the smallest increment in modeling the observed phenomenon of the quantum-classical transition.
No approach is ever more accurate than ‘shut up and calculate’. The ‘Shut up and calculate’ version of Special Relativity, wherein we claim that Minkowski’s equations give us classical lengths but refuse to speculate about how this mysterious transition from Minkowski intervals to classical lengths is achieved, is just as accurate as Special Relativity. It’s just, well, frankly in denial about how the undermining of your intuition of a classical length is not a good reason to stick your fingers in your ears and go “Nah nah nah I’m not listening” with respect to Minkowski’s equations representing physical reality, the way they actually do. You believe this with respect to Special Relativity, and General Relativity, and every other “shut up and calculate” version of every physical theory from chemistry to nuclear engineering—that there’s no reason to shut up with respect to these other disciplines. I just believe it with respect to quantum mechanics too.
So do I, and have stated as much. Not sure where the misunderstanding is coming from.
You ought to, however, agree that QM is special: no other physical model has several dozens of interpretations, seriously discussed by physicists and philosophers alike. This is an undisputed experimental fact (about humans, not about QM).
What is so special about QM that inspires interpretations? Many other scientific models are just as counter-intuitive, yet there is little arguing about the underlying meaning of equations in General Relativity (not anymore, anyway) or in any other model. To use your own meta-trick, what is it so special about the Quantum theory (not about the quantum reality, if you believe in such) that inspires people to search for interpretations? Maybe if we answer this reasonably easy cognitive science question first, we can then proceed to productively discuss the merits of various interpretations.
Perhaps you mean the sheer quantity is so great. But there have been, an are, disputes about classical pysyics and relativity. Some of them have been resolved by just beiieving the theory and abandoning contrary intuitions. At one time, atoms were dismissed as a “mere calculational device”. Sound familiar?
Sure, every new theory is like that initially. But it only takes a short time for the experts to integrate the new weird ideas, like relative spacetime, or event horizons, or what have you. There is no agreement among the experts about the ontology of QM (beyond the undisputed assertion that head-in-the-sand “shut up and calculate” works just fine), and it’s been an unusually long time. Most agree that the wave function is, in some sense, “real”, but that’s as far as it goes. So the difference is qualitative, not just quantitative. Simply “trusting the SE” gives you nothing useful, as far as the measurement is concerned.
It doesn’t work “fine”, or at all, as an interpretation. It’s silent as to what it means.
There are slowly emerging themes, such as the uselessness of trying to recover classical physics at the fundamental level, and the importance of decoherence.
I don’t see what you mean by that. An interpretation that says “trust the SE” (I suppose you mean “reify the evolution of the WF according to the SE”) won’t give you anything results-wise, because its an interpretation
Uh, no. It’s not an interpretation (i.e. “explanation”), it’s an explicit refusal to interpret the laws.
Anyway, time to disengage, we are not converging.
Yeah. Note also that if you are observing a probability distribution, that doesn’t imply that something computed the probability density function. E.g. if you observe random dots positions of which follow Gaussian distribution, that could be count of heads in a long string of coin tosses rather than Universe Machine really squaring some real number, negating result, and calculating an exponent.
There’s certainly one obvious explanation which occurs to me. There being a copy of you in another universe seems more counterintuitive than needing to give up on measuring distances, so it’s getting more like the backlash and excuses that natural selection got, or that was wielded to preserve vitalism, as opposed to the case of Special Relativity. Also the simple answer seems to have been very hard to think of due to some wrong turns taken at the beginning, which would require a more complex account of human cognitive difficulty. But either way it doesn’t seem at all unnatural compared to backlash against the old Earth, natural selection, or other things that somebody thought was counterintuitive.
You need to realize that the “simple answer” isn’t so simple- no one has been able to use the axioms for many worlds to make an actual calculation of anything. By kicking away the Born amplitudes, they’ve kicked away the entire predictive structure of the theory. You are advocating that physicists give up the ability to make predictions!
Its even worse when you go to quantum field theories and try to make many worlds work- the bulk of the amplitude will be centered on “world’s” with undefined particle number.
You mean that “simple answer” that still can’t make predictions?
Cat neither dead nor alive until you open the box?
Yeah, that’s pretty special, but why?
On a related note, in MWI there is an uncountable number of worlds with the cat is in various stages of decay once the box is open. Is that weird or what.
You’re asking exactly what it is about a theory which speaks of unobserved cats as dwelling in existential limbo, that would inspire people to seek alternatives?
Read Elizier’s sequence on quantum mechanics. The cat does not collapse into a dead or alive state, the cat is dead, and another cat is alive. One of the many worlds has a dead cat, another has a live cat.
Read this thread where that idea is shown not to be a “slam dunk”.
You have to remember that ‘interpretations’ of quantum mechanics are actually reformulations of quantum mechanics. Just as classical mechanics can be described by Newton’s laws, or one of several action principals (Hamilton/Jacobi,Maupertuis’ principle,etc), quantum mechanics has many formulations, each with their own axioms- there is nothing unique about quantum in this sense.
What IS unique about quantum mechanics is that so many interpretations are incomplete. Copenhagen is circular (to make sense of the measurement axiom, you need correspondence principle axiom, but classical needs to be a limit of quantum mechanical.) The measurement problem is a formal problem with the axioms of the theory.
Of course, many worlds is in an even worse position. No one has yet to effectively derive the Born amplitudes which means the interpretation is broken, there is no recipe to extract information about measurements from the theory.
Bohm might be an actual complete interpretation but its nearly impossible to extend the formalism to quantum field theories, Consistent histories is where I put my money- the homogenous history class operator seems potentially like the missing piece.
Hmm, I could never make sense of the formalism of CH (it seems to rely on time-ordering and density matrices, neither of which inspire confidence, given that one expects a relativistically invariant evolution of a pure state), and the popular write-ups sound like advocacy.
Why would you expect relativistic invariance? The Schroedinger equation isn’t even Galilean invariant ( the mass comes through as a central charge, the probabilities are Galilean but not lorentz invariant)
The best reference for consistent histories is Bob Griffith’s excellent text (not to be confused with the other Griffiths)
Because I would expect a model that has a hope in hell of getting deeper toward the measurement problem than “shut up and calculate” to give a relativistically invariant account of the EPR, and because I expect such a model to be built on top of some form of QFT (as I mentioned in another reply, the number of particles is not conserved during the measurement, so the Hilbert space doesn’t cut it, you need something like a Fock space, second quantization etc.).
But the only way you are going to get relativistic invariance is to throw out the Schroedinger equation. The hope is that an interpretation makes it easier to move to QFT, NOT that a given interpretation will be Lorentz invariant (which is impossible, given the Schreodinger equation).
So far none of the interpretations of quantum are built on top of QFT, mostly because QFT isn’t yet formalized, its a hodge podge of heuristics that gets the right answer. The handful of axiomatic field theories don’t actually describe physical systems. Some people have a pipe dream that finding better quantum axioms will point the way toward better QFT axioms, but I’m not in that camp.
The SE should be a non-relativistic limit of whatever model is the next step. Not sure if it requires a formalization of QFT, it just needs to make decent predictions. Physicists are not overly picky. As long as it’s reasonably self-consistent. Or not even. As long as it helps you calculate something new and interesting unambiguously.
QFT IS the obvious next-step, but the reason people play with standard quantum formulations instead of trying to work in the context of QFT and ‘push the interpretation down’ is that QFT isn’t yet on firm footing.
::does some reading on Wikipedia::
Hmmm… apparently making QM play nice with Special Relativity isn’t quite as simple as using the Dirac equation instead of the Schrodinger equation, because the Dirac equation has negative energy solutions, and making it impossible for electrons to “decay” into these negative energy states requires kludges.
(Why is it that, the more I learn about QM, the more it seems like one kludge after another?)
Quantized wave function solves the negative energy problem, at the expense of introducing a bunch of infinities, some of which are easier to work around (renormalize) than others. For example, there is no way to usefully quantize gravitational field.
This isn’t quite true. What solves the problem isn’t quantizing wave functions, its insisting that positive energy propagate forward in time- i.e. picking the Feynman propagator (instead of the retarded or advanced propagator, etc) that solves the problem. You still have to make a division between the positive energy and negative energy pole in the propagator (unfortunately, all observers can’t agree on which states have positive and what states have negative energy, which is the basis of the Unruh effect- two observers accelerating relative two each other cannot agree on particle number).
Also, its a misconception that you can’t simply quantize the gravitational field. If you treat GR as an effective theory you can make calculations of arbitrary accuracy with a finite number of measured parameters, with just canonical quantization. The standard model is ALSO not a renormalizable field theory (not since the addition of neutrino masses). Weinberg has recently tried to make the argument that maybe GR + canonical quantization (i.e. gravity is asymptotically safe)
Thanks for the corrections, my area is mostly classical GR, not Standard Model physics. And a good point on the Unruh effect. As for quantizing GR, note the “useful” disclaimer. I am deeply suspicious of any technique that treats GR as an effective field theory on some background spacetime, as it throws away the whole reason why GR is unlike any other field theory. Weinberg is especially prone to to doing that, so, while I respect anything he does in HEP, I don’t put much stock into his GR-related efforts. If anything, I expect the progress to come from the entropic gravity crowd, with nothing to quantize.
When I worked in physics I did perturbative QCD stuff in graduate school and then effective theories for medium energy scattering, and finally axiomatic quantum field theories as a postdoc before I left physics for a field with actual employment opportunities (statistics/big data stuff).
But why shouldn’t GR be treated as just another field theory? It certainly has the structure of a field theory. Feynman and then Weinberg managed to show that GR is THE self-consistent, massless spin-2 field theory- so to that extent it IS just another field theory.
Treating GR as an effective theory works. I doubt that the theory is asymptotically safe, but for an effective theory, who cares? Why should we treat the matter part of the action any differently than we treat the spacetime piece of the action?
That’s a separate discussion, but let me just note that the action would have to be summed not just over all paths (in which spacetime?), but also over all possible (and maybe impossible) topologies, as well.
No mechanism is required, you just get that from the SWE (taken realistically..as it isn’t in rQM). Are you a physicist?
Not sure what SWE stands for.
Schrodinger (Wave) Equation.
Oh. The Schroedinger equation says nothing about the measurement. In all likelihood, a theory of quantum to classical transition would require at least some elements of QFT, as the measurement, as an irreversible process, results in emission of photons, phonons or some other real or quasi-particles. Thus you have to go from the Hilbert space to some sort of Fock space, since the number of particles is not conserved.
Measurement of what? I was responding to your comment that MWI does not explain splitting ontologically In fact the ontology is just “the territory is just what a SWE of the universe says it is”.
This should screen off the title/profession “physicist” entirely, I think. If that’s what you meant in the first place, then it wasn’t quite clear.
It seems at first like you’re asking about academic degrees and titles and tribal levels of authority.
I was surprised at the mistake.
This isn’t actually correct- there is not a “shut-up-and-calculate” version of many world’s- without the born probabilities you can’t calculate anything. Maybe someday Deutsch,Wallace or some other enterprising many worlds advocate will show us a way to do calculations without the measurement postulate. That hasn’t happened yet, so many worlds does not let us calculate. As far as I know, this inability to calculate is the primary reason physicists reject it.
I’m very curious as to why I’m being downvoted for expressing this sentiment, if any down voter cares to explain, I’d be much obliged.
FYI, “territory” means “territory”, not map.
Model of what? If you subtract the ontology from an interpretation, what are you left with knowledge of?
A basis to build a testable model on.
In this and your previous comment, you write as though as though rQM is a different formalism, a different theory, leading to different results. It isn’t.
Feel free to quote the statement that led you to such a strange conclusion.
and
In principle rQM could suggest a different mental picture, and one better capable of inspiring further models that will make successful predictions. (Assuming shminux’s bizarre positivist-like approach admits the existence of mental pictures.) The “better capable” part seems unlikely to this layman. Feynman’s path integrals have a very MWI-like feel to me, and Feynman himself shared that impression when he wrote the book with Hibbs. But since paths that go back in time seem to pose a problem for Eliezer’s causality-based approach, perhaps shminux has some reason for preferring rQM that I don’t see. I’m still betting against it.
In RQM, there are no other worlds in the MWI sense. MWI allows observers to make contradictory measurements, such as |up> and |down> and then tries to remove the contradiction by indexing each measurement to its own world. rQM does not allow observers to make contradictory measurements, so there is no need to wish away worlds, because there was never a need to introduce them.
“However, the comparison does not lead to contradiction because the comparison is itself a physical process that must be understood in the context of quantum mechanics. Indeed, O′ can physically interact with the electron and then with the l.e.d. (or, equivalently, the other way around). If, for instance, he finds the spin of the electron up, quantum mechanics predicts that he will then consistently find the l.e.d. on (because in the first measurement the state of the composite system collapses on its [spin up/l.e.d. on] component). That is, the multiplicity of accounts leads to no contradiction precisely because the comparison between different accounts can only be a physical quantum interaction. This internal self-consistency of the quantum formalism is general, and it is perhaps its most remarkable aspect. This self consistency is taken in relational quantum mechanics as a strong indication of the relational nature of the world.”—SEP
rQM has an ontology. It’s an ontology of relations. rQM denies state—non-relational infmoration. rQM does not need to say anything is real relativee to anything else—only that some information is not available to some systems.
I have no idea what that means.
Maybe he’s counting the lack of an objective state as additional information?
Basic question I probably should’ve asked earlier: Does shminux::RQM entail not-MWI?
If the answer is “no” then shminux::RQM is indeed plausibly shutting up, since by adding further information we can arrive at MWI. I plead guilty to failing to ask this question, note that shminux failed to volunteer the information, and finally plead that I think most RQMers would claim that theirs is an alternative to MWI.
MWI=universal state
Rovelli-rQM=no universal state
Can you describe in more detail what you mean by ‘no universal state’?
By “state” I mean information physically embodied in a non relational way.
By “universal” I mean the maximal ensemble: universe, multiverse, cosmos, whatever.
(I think you might have been hearing “the universe does not have a state” as “nothing is real” or “nothing is out there”. There is something out there, but it is not anything that can even be conceived as existing in a classical view-from nowhere style. “Following the idea of relational networks above, an RQM-oriented cosmology would have to account for the universe as a set of partial systems providing descriptions of one another. The exact nature of such a construction remains an open question.”—WP)
To the extent that this seems to be meaningful at all, this would seem to imply that not only is the universe mysterious and ineffable, it’s also uncomputable—since anything you can calculate in a turing machine (or even a few kinds of hypercomputers) can be “conceived of as existing in a classical view-from nowhere style” (it’s just a list of memory states, together with the program). That’s a lot of complexity just to be able to deny the idea of objective reality!
Well, general relativity, while descriptively very simple, is awfully complex if you measure complexity by the length of a simulator program, so perhaps in the interest of consistency you should join the anti Einsteinian crank camp first.
Those incredibly successful theories were based entirely on the notion of complexity in a more abstract language where things like having no outside view and no absolute spacetime are simpler than having outside view.
Nice non-sequitor you’ve got there. Newtonian mechanics is simpler than general relativity. It also happens to be wrong, so there’s no point going back to it. But GR is not even that complex relative to a theory that claims that the cosmos is an ineffable mystery—GR has well defined equations, and takes place in a fixed riemannian manifold. You can in fact freely talk about the objective spacetime location of events in GR, using whatever coordinate system you like. This is because it is a good theory.
Actually GR shows the advantage of having an outside view and being able to fit things into a comprehensive picture. If my graduate GR course had refused to talk about manifolds and tensors and insisted that you could only measure “lengths relative to specific observers”, and shown us a bunch of arcane equations for converting measurements between different observers’ realties, I imagine it wouldn’t have been half as fun.
(Although the fact that certain solutions to the GR equations allow closed timelike curves and thereby certain kinds of hypercomputation is less than ideal—hopefully future unified theories will conspire to eliminate such shenanigens.)
The point is that absence of the absolute time really gets in the way of implementing a naive simulator, the sort that just updates per timestep. Furthermore, there is no preferred coordinate frame in GR, but there is a preferred coordinate frame in a simulator.
Ultimately, a Turing machine is highly arbitrary and comes with a complex structure, privileging implementations that fit into that structure, over conceptually simpler theories which do not.
But it’s no problem for a simulator that derives a proof of the solution to the equations, such as a SAT solver. Linear time is not neccesary for simulation, just easier for humans to grasp.
Even if this is true, if the simulation is correct, the existence of such a preferred reference frame is unobservable to any observer inside the simulation, and therefore makes no difference. A simulation that does GR calculations in a particular coordinate system, still does GR calculations.
How are you even going to do those calculations exactly? If you approximate, itll be measurable.
Ultimately there is this minimal descriptive complexity approach that yields things like GR based on assumptions of as few absolutes as possible, and then theres this minimal complexity of implementation on a very specific machine approach, which would yield a lot of false predictions had anybody bothered to try to use it as the measurements improved.
edit: also under an ontology where invariants and relationals with no absolutes are not simpler its awfully strange to find oneself in an universe wheich looks like ours. The way i see it, there are better and worse ways to assign priors, and if you keep making observations with very low priors under one assignment but not other, you should consider the prioes scheme where you keep predicting wrong to be worse.
You seem to think I find GR and quantum mechanics strange, or something. No, it’s perfectly normal to live in a universe with no newtonian ideas of “fixed distance”. GR does not have “no absolutes”, it has plenty of absolutes. It has a fixed riemannian manifold with a fixed metric tensor (that can be decomposed into components in any coordinate system you like).
A model like GR’s is exactly the kind that I would like to see for quantum mechanics—one where it’s perfectly clear what the universe is and what equations apply to it, and ideally an explanation of how we observers arise within it. For this position, MWI seems to be the only serious contender, followed perhaps by objective collapse, although the latter seems unlikely.
But wouldn’t GR still fall prey to the same ‘hard to implement on a TM’ argument? Also, one could define a relational model of computation which does not permit an outside view (indeed the relational QM is such a thing), by the way. It’s not clear which model of computation would be more complex.
With regards to the objective collapse, I recall reading some fairly recent paper regarding the impact of slight non-linearities in QFT on MWI-like superpositions, with conclusion that slight non-linearities would lead to objective collapse which occurs when the superposition is too massive. Collapse does seem unlikely on it’s own—if you view it as some nasty inelegant addition, but if it arises as a product of a slight non linearity, it seems entirely reasonable, especially if the non-linearity exists as a part of quantum gravity. It has been historically common that a linear relationship would be found non-linear as measurements improve. (The linear is simplest, but the non-linear models are many—one specific non-linear model is apriori less likely than a linear one, but the totality of non-linear models is not).
Without collapse you still have the open question of Born’s law, by the way. There been a suggestion to count the distinct observers somehow, but it seems to me that this wouldn’t work right if part of the wavefunction is beamed into the space (and thus doesn’t participate in decoherence of an observer), albeit I never seen a concrete proposal as to how the observers should be counted...
And back to the Turing machines, they can’t do true real numbers, so any physics as we know it can only be approximated, and it’s not at all clear what an approximate MWI should look like.
QM is computable. rQM doesnt change that. If an observer wants to do quantum cosmology, they can observe the universe, not from nowhere, but from their perspective, store observations and compute with them. Map-wise, nothing much has changed.
Territory-wise, it looks like the universe can’t be a (classical) computer. Is that a problem?
As I understand it, any quantum computer can be modeled on a classical one, possibly with exponential slowdown.
Be modeled doesn’t mean be.
I guess that’s the root of our disagreement about instrumentalism.
The dictionary seems to be on my side.
I can see how your conclusion follows from that assumption, but the assumption is as strange as the conclusion. Ideally, an argument should proceed from plausible premises.
Disengaging due to lack of convergence.
Well, that’s one way of avoiding update.
“The universe is not anything that can even be conceived as existing in a classical view-from nowhere style” also means that the universe can’t be modeled on a computer (classical or otherwise). From a complexity theory point of view, this makes the rQM cosmology an exceptionally bad one, since you must have to add something uncomputable to QM to make this true (if there is even any logical model that makes this true at all).
The fact that you can still computably model a specific observer’s subjective perspective isn’t really relevant.
Out of the box, a classical computer doesn’t represent the ontology of rQM because all information has an observer-independent representation, but s software layer can hide literal representations in the way a LISP gensym does. Uncomputability is not required.
In any case, classical computability isn’t a good index of complexity. It’s an index of how close something is to a classical computer. Problems are harder or easier to solve according to the technology used to solve them. That’s why people don’t write device drivers in LISP.
Um, computability has very little to do with “classical” computers. It’s a very general idea relating to the existence of any algorithm at all.
Uncomputability isn’t needed to model the ontology of rQM,
I think what EY is saying is that, rQM entails MWI, and only an extra layer of epistemological interpretation denies the reality to the worlds. ie, he thinks MWI says “QM implies many worlds” whereas rQM says “QM implies many worlds, but we should just ignore that”. (One man’s ontological minimalism is another man’s epistemological maximism).
But that’s all based on a sequence of misunderstanings. rQM doesn’t allow observers to make contradictory observations AND there is no observer-indepenent world-state in rQM, so there are no multiple world-states in rQM.
So true.
Or MWI could be said to be complicating the ontology unnecessarily. To be sure, rQM answers epistemologically some questions that MWI answers ontologically, but that isn’t obviously a Bad Thing. A realistitc interpretation of the WF is a postive metaphyscial assumption, not some neutral default. A realistic quantum state of the universe is a further assumption that buys problems other interpretations don’t have.
To the extent that it is worth replying to such things it is worth replying well. A terse reply will tend to (in my personal experience) and in this case seems to have set you up for further sniping and will typically result in undermining your position independently of actual merit. I expect the net effect of this engagement to be (admittedly trivial) undermining of the credibility of your MWI lesson.
My own interest is not in the QM but instead that several (relatively) subtle rhetorical techniques related to intellectual and moral high ground manipulation and asymmetric application of norms that I would like to see less of are in fact being rewarded with success and approval. ie. You are feeding the .