Giving “probably” of actual outcome for the coin flip as ~1 looks like a type error, although it’s clear what you are saying. It’s more like P(coin is heads|coin is heads), tautologically 1, not really a probability.
As a property of the actual coin and flip, the probability of heads is 0 or 1 (modulo some nonzero but utterly negligible quantum uncertainty)
This mixes together two different kinds of probability, confusing the situation. There is nothing fuzzy about the events defining the possible outcomes, the fact that there is also indexical uncertainty imposed on your mind while it observes the outcome is from a different problem.
Giving “probably” of actual outcome for the coin flip as ~1 looks like a type error, although it’s clear what you are saying. It’s more like P(coin is heads|coin is heads), tautologically 1, not really a probability.
Edited to clarify.
This mixes together two different kinds of probability, confusing the situation. There is nothing fuzzy about the events defining the possible outcomes, the fact that there is also indexical uncertainty imposed on your mind while it observes the outcome is from a different problem.
Yeah, it just felt like too much work to add ”...randomly sampling from future Everett branches according to the Born probabilities” or the like.
My point is that most of the time decision-theoretic problems are best handled in a deterministic world.