Models or real objects or things capture something that is not literally present in the world. The world contains shadows of these things, and the most straightforward way of finding models is by looking at the shadows and learning from them. Hypotheses is another toy example.
One of the features of models/things seems to be how they capture the many possibilities of a system simultaneously, rather than isolated particular possibilities. So what I gestured at was that when considering models of humans, the real objects or models behind a human capture the many possibilities of the way that human could be, rather than only the actuality of how they actually are. And this seems useful for figuring out their preferences.
Path-dependence is the way outcomes depend on the path that was taken to reach them. A path-independent outcome is convergent, it’s always the same destination regardless of the path that was taken. Human preferences seem to be path dependent on human timescales, growing up in Egypt may lead to a persistently different mindset from the same human growing up in Canada.
I see. But I’m not talking about figuring out human preferences, I’m talking about finding world-models in which real objects (such as “strawberries” or “chairs”) can be identified. Sorry if it wasn’t clear in my original message because I mentioned “caring”.
Models or real objects or things capture something that is not literally present in the world. The world contains shadows of these things, and the most straightforward way of finding models is by looking at the shadows and learning from them.
You might need to specify what you mean a little bit.
The most straightforward way of finding a world-model is just predicting your sensory input. But then you’re not guaranteed to get a model in which something corresponding to “real objects” can be easily identified. That’s one of the main reasons why ELK is hard, I believe: in an arbitrary world-model, “Human Simulator” can be much simpler than “Direct Translator”.
So how do humans get world-models in which something corresponding to “real objects” can be easily identified? My theory is in the original message. Note that the idea is not just “predict sensory input”, it has an additional twist.
Models or real objects or things capture something that is not literally present in the world. The world contains shadows of these things, and the most straightforward way of finding models is by looking at the shadows and learning from them. Hypotheses is another toy example.
One of the features of models/things seems to be how they capture the many possibilities of a system simultaneously, rather than isolated particular possibilities. So what I gestured at was that when considering models of humans, the real objects or models behind a human capture the many possibilities of the way that human could be, rather than only the actuality of how they actually are. And this seems useful for figuring out their preferences.
Path-dependence is the way outcomes depend on the path that was taken to reach them. A path-independent outcome is convergent, it’s always the same destination regardless of the path that was taken. Human preferences seem to be path dependent on human timescales, growing up in Egypt may lead to a persistently different mindset from the same human growing up in Canada.
I see. But I’m not talking about figuring out human preferences, I’m talking about finding world-models in which real objects (such as “strawberries” or “chairs”) can be identified. Sorry if it wasn’t clear in my original message because I mentioned “caring”.
You might need to specify what you mean a little bit.
The most straightforward way of finding a world-model is just predicting your sensory input. But then you’re not guaranteed to get a model in which something corresponding to “real objects” can be easily identified. That’s one of the main reasons why ELK is hard, I believe: in an arbitrary world-model, “Human Simulator” can be much simpler than “Direct Translator”.
So how do humans get world-models in which something corresponding to “real objects” can be easily identified? My theory is in the original message. Note that the idea is not just “predict sensory input”, it has an additional twist.