China is following a strategy of shutting down everything and getting R0 as low as possible. This works well in the short term, but they either have to keep everything shut down forever, or risk the whole thing starting over again.
UK is following a strategy of shutting down only the highest-risk people, and letting the infection burn itself out. It’s a permanent solution, but it’s going to be really awful for a while as the hospitals overload and many people die from lack of hospital care.
What about a strategy in between these two? Shut everything down, then gradually unshut down a little bit at a time. Your goal is to “surf” the border of the number of cases your medical system can handle at any given time (maybe this would mean an R0 of 1?) Any more cases, and you tighten quarantine; any fewer cases, and you relax it. If you’re really organized, you can say things like “This is the month for people with last names A—F to go out and get the coronavirus”. That way you never get extra mortality from the medical system being overloaded, but you do eventually get herd immunity and the ability to return to normalcy.
This would be sacrificing a certain number of lives, so you’d only want to do it if you were sure that you couldn’t make the virus disappear entirely, and sure that there wasn’t going to be vaccine or something in a few months that would solve the problem, but it seems like more long-term thinking than anything I’ve heard so far.
I’ve never heard of anyone trying anything like this before, but maybe there’s never been a relevant situation before.
If you first do lockdowns to get new cases to ~0 and then relax, optimistically you will get localized epidemics that you can contain with widespread testing, contact tracing, and distancing if needed. Cost of testing & tracing and having to do occasional local/regional lockdowns could end up being manageable until treatment/vaccine arrives.
My main reason for optimism is Korea’s and China’s success containing a large outbreak. We will be expecting the secondary epidemics and reacting quickly, so they will be small when detected, so should be much easier to contain than the first surprise outbreak.
We’ll get data on this in the coming months as China loosens restrictions. There is option value in containing asap and first trying things other than deliberate infections.
Linking the The Imperial College paper here (which a lot of people have referenced lately) that addresses these two approaches: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread –reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. (https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf)
The biggest issue with the suppression strategy is the time required for the lockdown - until R reaches low enough levels that eliminate human-to-human transmission, or until a vaccine is available. Estimated 12-18 months with a r0 of 2.4.
In fact the more successful a strategy is at temporary suppression (China), the larger the later epidemic if the lockdown is lifted prematurely—due to lesser build-up of herd immunity (Figure 3, “post-September 2020”).
Mitigation: “In the most effective mitigation strategy examined, which leads to a single, relatively short epidemic, the surge limits for both general ward and ICU beds would be exceeded by at least 8-fold under the more optimistic scenario for critical care requirements that we examined. In addition, even if all patients were able to be treated, we predict there would still be in the order of 250,000 deaths in GB, and 1.1-1.2 million in the US.”
Their paper is not relevant as they do not analyze testing & contact tracing AT ALL, only mentioning it briefly in the Discussion section. I think everyone who thinks the strategy I describe might be feasible (which now seems to be most informed participants in the discussion on here & rationalist Twitter) more or less agrees with the Ferguson analysis if you assume you can’t do testing & tracing & isolation or they won’t work.
Yes you are correct, succinctly addressed here ” They ignore standard Contact Tracing [2] allowing isolation of infected prior to symptoms. They also ignore door-to-door monitoring to identify cases with symptoms [3]. Their conclusions that there will be resurgent outbreaks are wrong. After a few weeks of lockdown almost all infectious people are identified and their contacts are isolated prior to symptoms and cannot infect others [4]. ” https://necsi.edu/review-of-ferguson-et-al-impact-of-non-pharmaceutical-interventions
I’ve spent some time thinking about endgames here. (Not that I feel like I’ve come to any conclusions. I wish I knew what e.g. the WHO thought the endgame was.) The biggest problem I see with this idea is the lag between input and output—when you change your quarantine measures, you can’t observe the result for at least the 5-7 days it takes the newly infected to get symptoms, and longer if you want to get a lot of confidence in your measurement, over the noise inherent in the system.
Control systems with high lag like this are incredibly difficult to work with. Especially in the presence of exponential growth like this system has—if you accidentally let R get a bit too high, it will be a week or two before you notice, and in that time you will have seeded a ton of cases that you will have to track down and deal with.
I think the most hopeful endgame here, near-mid-term, is that we find a combination of antivirals with high effectiveness against COVID-19, which reduces the rate of severe pneumonia dramatically. At that point our hardest constraint, ventilators, will get relaxed. Beds are a lot easier to deal with a shortage of.
Mid-long-term, of course, we’re all hoping for a vaccine. Who knows whether that’s going to happen.
In Singapore, and China-outside-Hubei, my impression is that very aggressive high-bandwidth contact tracing is working effectively. Unfortunately, at least Seattle has already given up on that, as far as I can tell. But if we can simultaneously raise our ability to do contact tracing effectively, and lower the value of R below 1 until we get the number of cases under some kind of control, we ought to be able to use a combination of contact tracing and more moderate measures to keep it there. I hope.
Of course, the organization primarily responsible for contact tracing in the US is currently rather indisposed. But in theory, the states should be just as able to do it, although some scaling up may be in order.
Control systems with high lag like this are incredibly difficult to work with. Especially in the presence of exponential growth like this system has—if you accidentally let R get a bit too high, it will be a week or two before you notice, and in that time you will have seeded a ton of cases that you will have to track down and deal with.
This is why you need to have borders on multiple scales and cancellation of large events.
If one case slips through, in a week or two they will infect a handful of new people. If you have set up a system of regional and national borders, as well as cancelled large events, you will find out about this trace the contacts and temporarily increase the strength of the lockdown in only that region.
This strategy nearly worked in South Korea, but then patient 31 was a superspreader:
Just like to chime in to say that this (=′ flattening the curve/ herd immunity’) fundamentally doesn’t work, and you don’t need to have a PhD in epidemiology from Imperial College to understand this [but you might need a PhD in epidemiology to misunderstand it], just basic arithmetic and common sense.
Suppose 50% of the UK (33 million people) get the virus of which 5% (~ 1.8 million people) will need serious hospitalization [conservative estimate]. The current capacity of ICU beds in the UK is something on the order of 2000 beds , depending on occupancy rates, ability to scale up et cetera. Let’s be extremely optimistic and somehow the UK is able to quintuple this capacity [as far as I can tell this is unlikely]. When somebody is sick they might need care for 2 weeks. The annual hospital capacity is: 25 weeks * 10.000 beds= 250k. At the moment the capacity is nowhere that (perhaps 50-100k).
You can see that 1.8 million is far larger than 100k or even 250 k. Even wildly optimistic estimates will not yield anything realistic. This assumes that the government is somehow able to control the infection spreading over a year; instead of two months. There is no reason to think they can do this without extreme (partial) lockdown measures. Controlling the R0 is extremely hard. All the mild measures seem to help only a tiny little bit. If the R0 is only a bit over 1, we still have exponential growth; and you have merely pushed timelines back a few months.
Can we perhaps expose young people but lock up older people for one-two years [when the vaccin might arrive]? I find this is extremely unlikely; you need only a couple people to flout the rules to wipe out an entire nursing home.
Is it worth it to (partially) lock down the entire country for a year to save maybe a hundred thousand old people? There are only two real possible approaches:
1. Let the Boomers die. If we’re lucky the death rate is ~0.7 percent. When (not if) hospitals overflow this will easily triple. Without medical care, once you go critical you simply can’t breath [though I heard something to the effect that most/many deaths are due to cardiac arrest]. Simple as that. With a massive host population the virus will mutate and we might have the same problem every year [<- this very real possibility is perhaps the most important to think about].
2. total lock down → squash the curve, followup with massive testing Gangnam style and extensive contact tracing [also: Fast-track all possible vaccins/treatments and fire Chief Medical Officer]. This seems to work so far in all East-Asian countries. Why the people with actual experience and succes in this matter get systematically ignored in these discussion will be a question for historians.
I know my preferred approach. There is no linear response to an exponential tide.
There is a strategy bifurcation: Either you lock down hard and contain/eradicate, or you just accept the losses and tell people to go on as normal, with isolation of the vulnerable.
The middle path is not favorable. You take both the human damage and the economic damage.
The South Korean approach seems to be roughly as effective as the Chinese approach but significantly less costly and disruptive. SK managed to halt exponential growth and currently cases are increasing linearly at a rate of 75 or so per day. This has been achieved without lockdowns or extensive border closings. Instead, the key ingredient appears to be rapid, extensive and largely free testing, and an educational campaign that stresses the importance of hand washing and staying at home.
China is following a strategy of shutting down everything and getting R0 as low as possible. This works well in the short term, but they either have to keep everything shut down forever, or risk the whole thing starting over again.
UK is following a strategy of shutting down only the highest-risk people, and letting the infection burn itself out. It’s a permanent solution, but it’s going to be really awful for a while as the hospitals overload and many people die from lack of hospital care.
I’m confused about why the second strategy works better than the first strategy at killing it permanently. If you shut down everything, shouldn’t everything die out faster? (Unless you have open borders and let it in again, but wouldn’t that also apply in the UK case?)
The first strategy leaves you with a huge population of people with no immunity to the virus, which means you have to keep holding the lid on it indefinitely or you’re back to square one.
In the second strategy, everyone ends up either immune or dead, which doesn’t mean the virus is gone—it will remain endemic—but there will be no giant flood of new cases when people resume their lives.
(Obviously it’s not quite as simple as that if the virus doesn’t generate durable immunity. Then you end up with something like the flu, where partial immunity keeps it vaguely tamped down with occasional flares.)
Right, yes, agreed and good point—my understanding is that a naive epidemiological model gives a fraction of 1 - (1/R_0) of the population needing to be infected, to drive the effective value of R (new transmissions per infected person) below 1, at which point the population can no longer sustain epidemic spread.
Isn’t this exactly what “flatten the curve” is about? Because a lot of people are talking about that as a solution, including some governments.
The main problem is that the curve needs to get really flat for hospitals to have time with everyone. Depending on how overwhelmed you want your hospitals to be, you could be in lock-down for several years. Some calculations in this article.
Isn’t “social distancing” the in-between strategy already? I was thinking of something similar today, when questioned whether to have a friend to my house. If I followed the strictest measures, I wouldn’t. But then, if nobody did and we were essentially on self-quarantine mode, then the virus wouldn’t spread at all or very, very, little and we would be hovering in small numbers for months, until next fall/winter, when it could get really risky again (presuming that weather has an influence, like with flu). So doesn’t the social distancing strategy want some appreciable degree of transmission, high enough to get to herd immunity in a reasonable amount of time, but slow enough to avoid a hospital crisis? Are governments just relying on the idea that some people will ignore the suggestions, and we’ll get a reasonable degree of transmission over time during social distancing?
Your goal is to “surf” the border of the number of cases your medical system can handle at any given time (maybe this would mean an R0 of 1?) Any more cases, and you tighten quarantine; any fewer cases, and you relax it. If you’re really organized, you can say things like “This is the month for people with last names A—F to go out and get the coronavirus”. That way you never get extra mortality from the medical system being overloaded, but you do eventually get herd immunity and the ability to return to normalcy.
I’m pretty sure that’s exactly what the UK is trying to do? I’m actually pretty confident that the UK government isn’t planning to have ” hospitals overload and many people die from lack of hospital care. ”. Even if they were sure that was the best approach (and they just didn’t think of your idea?) it would be completely unfeasible politically
But why can’t we eradicate the virus? Let’s say China shuts down international travel, keeps doing what they’re doing, and then slowly eases back up in some area, letting the people in that city comingle and go back to work, but still restricting travel in and out. Let’s say they get that city back running, with no coronavirus cases after a month.
At the same time...Won’t they also have basically eradicated other influenza there? Even if not entirely, there should be much less cold and flu, right? So as soon as coronavirus creeps back in, it should be much easier to contain.
I guess my thinking here is, if coronavirus is much more virulent than the flu, and this type of containment works to almost eliminate the coronavirus, could China...actually eradicate the flu, at the same time? If not, why not?
The problem comes in from other countries. If China goes to all this effort and the US, Europe, UK etc don’t, do we would end up with this weird hazmat curtain? Asian countries would join China in eradicating the disease, and Australia and New Zealand would probably join them.
I’ve already heard that influenza cases are down in countries that enforced social distancing / lockdowns for coronavirus. However, it really only takes one country not doing this for influenza to return to typical incidence—there’s no real reason to believe it will be eradicated. (However, the same seems true for COVID-19, so I’m not sure what to expect there.)
I agree that actually eradicating influenza feels far-fetched. But on the other hand, it’s quite a lot easier to work with than COVID-19. Influenza isn’t nearly as infectious, most people have immunity, and it’s barely transmissible at all when the carrier is asymptomatic.
Imagine you actually did have the “hazmat curtain” situation. Everyone is asked to take their temperature on the way in, and significant fines (and potential visa cancellations) are imposed if you lie. At first nearly everyone is checked to verify, but this is relaxed to spot-checks as people get used to never breaking the rule. Few enough people are getting sick that when people do report influenza symptoms, they can be tested, and contact tracing can be employed to halt the outbreak and trace it back to how it was introduced.
If there are no animal reservoirs for the disease, I think that could be viable? It’s expensive, but influenza is a big cost in itself, in lost productivity and other problems.
The big problem I see for eradicating coronavirus will be in poorer countries—Africa, the middle east, etc. The outbreaks there are still pretty small, but there’s no real resources to address them, so the problem could grow there until it’s really hard to fix.
China is following a strategy of shutting down everything and getting R0 as low as possible. This works well in the short term, but they either have to keep everything shut down forever, or risk the whole thing starting over again.
UK is following a strategy of shutting down only the highest-risk people, and letting the infection burn itself out. It’s a permanent solution, but it’s going to be really awful for a while as the hospitals overload and many people die from lack of hospital care.
What about a strategy in between these two? Shut everything down, then gradually unshut down a little bit at a time. Your goal is to “surf” the border of the number of cases your medical system can handle at any given time (maybe this would mean an R0 of 1?) Any more cases, and you tighten quarantine; any fewer cases, and you relax it. If you’re really organized, you can say things like “This is the month for people with last names A—F to go out and get the coronavirus”. That way you never get extra mortality from the medical system being overloaded, but you do eventually get herd immunity and the ability to return to normalcy.
This would be sacrificing a certain number of lives, so you’d only want to do it if you were sure that you couldn’t make the virus disappear entirely, and sure that there wasn’t going to be vaccine or something in a few months that would solve the problem, but it seems like more long-term thinking than anything I’ve heard so far.
I’ve never heard of anyone trying anything like this before, but maybe there’s never been a relevant situation before.
If you first do lockdowns to get new cases to ~0 and then relax, optimistically you will get localized epidemics that you can contain with widespread testing, contact tracing, and distancing if needed. Cost of testing & tracing and having to do occasional local/regional lockdowns could end up being manageable until treatment/vaccine arrives.
My main reason for optimism is Korea’s and China’s success containing a large outbreak. We will be expecting the secondary epidemics and reacting quickly, so they will be small when detected, so should be much easier to contain than the first surprise outbreak.
We’ll get data on this in the coming months as China loosens restrictions. There is option value in containing asap and first trying things other than deliberate infections.
Linking the The Imperial College paper here (which a lot of people have referenced lately) that addresses these two approaches: (a) mitigation, which focuses on slowing but not necessarily stopping epidemic spread –reducing peak healthcare demand while protecting those most at risk of severe disease from infection, and (b) suppression, which aims to reverse epidemic growth, reducing case numbers to low levels and maintaining that situation indefinitely. (https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-COVID19-NPI-modelling-16-03-2020.pdf)
The biggest issue with the suppression strategy is the time required for the lockdown - until R reaches low enough levels that eliminate human-to-human transmission, or until a vaccine is available. Estimated 12-18 months with a r0 of 2.4.
In fact the more successful a strategy is at temporary suppression (China), the larger the later epidemic if the lockdown is lifted prematurely—due to lesser build-up of herd immunity (Figure 3, “post-September 2020”).
Mitigation: “In the most effective mitigation strategy examined, which leads to a single, relatively short epidemic, the surge limits for both general ward and ICU beds would be exceeded by at least 8-fold under the more optimistic scenario for critical care requirements that we examined. In addition, even if all patients were able to be treated, we predict there would still be in the order of 250,000 deaths in GB, and 1.1-1.2 million in the US.”
Their paper is not relevant as they do not analyze testing & contact tracing AT ALL, only mentioning it briefly in the Discussion section. I think everyone who thinks the strategy I describe might be feasible (which now seems to be most informed participants in the discussion on here & rationalist Twitter) more or less agrees with the Ferguson analysis if you assume you can’t do testing & tracing & isolation or they won’t work.
Yes you are correct, succinctly addressed here ” They ignore standard Contact Tracing [2] allowing isolation of infected prior to symptoms. They also ignore door-to-door monitoring to identify cases with symptoms [3]. Their conclusions that there will be resurgent outbreaks are wrong. After a few weeks of lockdown almost all infectious people are identified and their contacts are isolated prior to symptoms and cannot infect others [4]. ” https://necsi.edu/review-of-ferguson-et-al-impact-of-non-pharmaceutical-interventions
I’ve spent some time thinking about endgames here. (Not that I feel like I’ve come to any conclusions. I wish I knew what e.g. the WHO thought the endgame was.) The biggest problem I see with this idea is the lag between input and output—when you change your quarantine measures, you can’t observe the result for at least the 5-7 days it takes the newly infected to get symptoms, and longer if you want to get a lot of confidence in your measurement, over the noise inherent in the system.
Control systems with high lag like this are incredibly difficult to work with. Especially in the presence of exponential growth like this system has—if you accidentally let R get a bit too high, it will be a week or two before you notice, and in that time you will have seeded a ton of cases that you will have to track down and deal with.
I think the most hopeful endgame here, near-mid-term, is that we find a combination of antivirals with high effectiveness against COVID-19, which reduces the rate of severe pneumonia dramatically. At that point our hardest constraint, ventilators, will get relaxed. Beds are a lot easier to deal with a shortage of.
Mid-long-term, of course, we’re all hoping for a vaccine. Who knows whether that’s going to happen.
In Singapore, and China-outside-Hubei, my impression is that very aggressive high-bandwidth contact tracing is working effectively. Unfortunately, at least Seattle has already given up on that, as far as I can tell. But if we can simultaneously raise our ability to do contact tracing effectively, and lower the value of R below 1 until we get the number of cases under some kind of control, we ought to be able to use a combination of contact tracing and more moderate measures to keep it there. I hope.
Of course, the organization primarily responsible for contact tracing in the US is currently rather indisposed. But in theory, the states should be just as able to do it, although some scaling up may be in order.
This is why you need to have borders on multiple scales and cancellation of large events.
If one case slips through, in a week or two they will infect a handful of new people. If you have set up a system of regional and national borders, as well as cancelled large events, you will find out about this trace the contacts and temporarily increase the strength of the lockdown in only that region.
This strategy nearly worked in South Korea, but then patient 31 was a superspreader:
https://graphics.reuters.com/CHINA-HEALTH-SOUTHKOREA-CLUSTERS/0100B5G33SB/index.html
Just like to chime in to say that this (=′ flattening the curve/ herd immunity’) fundamentally doesn’t work, and you don’t need to have a PhD in epidemiology from Imperial College to understand this [but you might need a PhD in epidemiology to misunderstand it], just basic arithmetic and common sense.
Suppose 50% of the UK (33 million people) get the virus of which 5% (~ 1.8 million people) will need serious hospitalization [conservative estimate]. The current capacity of ICU beds in the UK is something on the order of 2000 beds , depending on occupancy rates, ability to scale up et cetera. Let’s be extremely optimistic and somehow the UK is able to quintuple this capacity [as far as I can tell this is unlikely]. When somebody is sick they might need care for 2 weeks. The annual hospital capacity is: 25 weeks * 10.000 beds= 250k. At the moment the capacity is nowhere that (perhaps 50-100k).
You can see that 1.8 million is far larger than 100k or even 250 k. Even wildly optimistic estimates will not yield anything realistic. This assumes that the government is somehow able to control the infection spreading over a year; instead of two months. There is no reason to think they can do this without extreme (partial) lockdown measures. Controlling the R0 is extremely hard. All the mild measures seem to help only a tiny little bit. If the R0 is only a bit over 1, we still have exponential growth; and you have merely pushed timelines back a few months.
Can we perhaps expose young people but lock up older people for one-two years [when the vaccin might arrive]? I find this is extremely unlikely; you need only a couple people to flout the rules to wipe out an entire nursing home.
Is it worth it to (partially) lock down the entire country for a year to save maybe a hundred thousand old people?
There are only two real possible approaches:
1. Let the Boomers die. If we’re lucky the death rate is ~0.7 percent. When (not if) hospitals overflow this will easily triple. Without medical care, once you go critical you simply can’t breath [though I heard something to the effect that most/many deaths are due to cardiac arrest]. Simple as that. With a massive host population the virus will mutate and we might have the same problem every year [<- this very real possibility is perhaps the most important to think about].
2. total lock down → squash the curve, followup with massive testing Gangnam style and extensive contact tracing [also: Fast-track all possible vaccins/treatments and fire Chief Medical Officer]. This seems to work so far in all East-Asian countries. Why the people with actual experience and succes in this matter get systematically ignored in these discussion will be a question for historians.
I know my preferred approach. There is no linear response to an exponential tide.
[1] https://www.telegraph.co.uk/global-health/science-and-disease/huge-regional-differences-intensive-care-bed-numbers-threaten/
I agree with this analysis completely.
There is a strategy bifurcation: Either you lock down hard and contain/eradicate, or you just accept the losses and tell people to go on as normal, with isolation of the vulnerable.
The middle path is not favorable. You take both the human damage and the economic damage.
The South Korean approach seems to be roughly as effective as the Chinese approach but significantly less costly and disruptive. SK managed to halt exponential growth and currently cases are increasing linearly at a rate of 75 or so per day. This has been achieved without lockdowns or extensive border closings. Instead, the key ingredient appears to be rapid, extensive and largely free testing, and an educational campaign that stresses the importance of hand washing and staying at home.
I’m confused about why the second strategy works better than the first strategy at killing it permanently. If you shut down everything, shouldn’t everything die out faster? (Unless you have open borders and let it in again, but wouldn’t that also apply in the UK case?)
The first strategy leaves you with a huge population of people with no immunity to the virus, which means you have to keep holding the lid on it indefinitely or you’re back to square one.
In the second strategy, everyone ends up either immune or dead, which doesn’t mean the virus is gone—it will remain endemic—but there will be no giant flood of new cases when people resume their lives.
(Obviously it’s not quite as simple as that if the virus doesn’t generate durable immunity. Then you end up with something like the flu, where partial immunity keeps it vaguely tamped down with occasional flares.)
Clarification: you don’t need everyone to be immune or dead. Just enough people that the remaining population can’t sustain a continuous epidemic.
Right, yes, agreed and good point—my understanding is that a naive epidemiological model gives a fraction of 1 - (1/R_0) of the population needing to be infected, to drive the effective value of R (new transmissions per infected person) below 1, at which point the population can no longer sustain epidemic spread.
Isn’t this exactly what “flatten the curve” is about? Because a lot of people are talking about that as a solution, including some governments.
The main problem is that the curve needs to get really flat for hospitals to have time with everyone. Depending on how overwhelmed you want your hospitals to be, you could be in lock-down for several years. Some calculations in this article.
Isn’t “social distancing” the in-between strategy already? I was thinking of something similar today, when questioned whether to have a friend to my house. If I followed the strictest measures, I wouldn’t. But then, if nobody did and we were essentially on self-quarantine mode, then the virus wouldn’t spread at all or very, very, little and we would be hovering in small numbers for months, until next fall/winter, when it could get really risky again (presuming that weather has an influence, like with flu). So doesn’t the social distancing strategy want some appreciable degree of transmission, high enough to get to herd immunity in a reasonable amount of time, but slow enough to avoid a hospital crisis? Are governments just relying on the idea that some people will ignore the suggestions, and we’ll get a reasonable degree of transmission over time during social distancing?
I’m pretty sure that’s exactly what the UK is trying to do? I’m actually pretty confident that the UK government isn’t planning to have ” hospitals overload and many people die from lack of hospital care. ”. Even if they were sure that was the best approach (and they just didn’t think of your idea?) it would be completely unfeasible politically
But why can’t we eradicate the virus? Let’s say China shuts down international travel, keeps doing what they’re doing, and then slowly eases back up in some area, letting the people in that city comingle and go back to work, but still restricting travel in and out. Let’s say they get that city back running, with no coronavirus cases after a month.
At the same time...Won’t they also have basically eradicated other influenza there? Even if not entirely, there should be much less cold and flu, right? So as soon as coronavirus creeps back in, it should be much easier to contain.
I guess my thinking here is, if coronavirus is much more virulent than the flu, and this type of containment works to almost eliminate the coronavirus, could China...actually eradicate the flu, at the same time? If not, why not?
The problem comes in from other countries. If China goes to all this effort and the US, Europe, UK etc don’t, do we would end up with this weird hazmat curtain? Asian countries would join China in eradicating the disease, and Australia and New Zealand would probably join them.
I’ve already heard that influenza cases are down in countries that enforced social distancing / lockdowns for coronavirus. However, it really only takes one country not doing this for influenza to return to typical incidence—there’s no real reason to believe it will be eradicated. (However, the same seems true for COVID-19, so I’m not sure what to expect there.)
I agree that actually eradicating influenza feels far-fetched. But on the other hand, it’s quite a lot easier to work with than COVID-19. Influenza isn’t nearly as infectious, most people have immunity, and it’s barely transmissible at all when the carrier is asymptomatic.
Imagine you actually did have the “hazmat curtain” situation. Everyone is asked to take their temperature on the way in, and significant fines (and potential visa cancellations) are imposed if you lie. At first nearly everyone is checked to verify, but this is relaxed to spot-checks as people get used to never breaking the rule. Few enough people are getting sick that when people do report influenza symptoms, they can be tested, and contact tracing can be employed to halt the outbreak and trace it back to how it was introduced.
If there are no animal reservoirs for the disease, I think that could be viable? It’s expensive, but influenza is a big cost in itself, in lost productivity and other problems.
The big problem I see for eradicating coronavirus will be in poorer countries—Africa, the middle east, etc. The outbreaks there are still pretty small, but there’s no real resources to address them, so the problem could grow there until it’s really hard to fix.