On Gasket Leaks
For the current production, we plan to use certified components to ensure reliability. For example, the Camfil CamCube AC is certified and tested to Leakage Class C, meaning that the overall ductwork-filter assembly performs at least as well as the filter alone. This level of quality control significantly reduces the likelihood of leaks in the system.
It’s true that during a large-scale crisis, the luxury of certified components might not always be available. Your suggestion of using permanent bonds could indeed be a practical solution in such cases. As mentioned elsewhere, there is still time to prepare for scaling up production, which includes exploring how to adapt to components of varying sizes, qualities, and production environments. Ensuring robust performance across diverse conditions will be an important part of this preparation.
Regarding the Level of Robustness
I might not have emphasized this sufficiently in the post, but the aim is not to achieve near 100% robustness. Instead, the goal is to provide people with a fair chance of survival in a subset of crisis scenarios. This concept is inspired by established systems like Nordic civilian defense against nuclear threats or lifeboats on ships. Neither of these protections guarantees survival for everyone—lifeboats, for instance, are not designed to save lives in every conceivable disaster, such as an airplane crash into shallow water at high speed.
The shelters are similarly intended to offer a reasonable chance of survival under specific catastrophic scenarios, recognizing that perfection is neither feasible nor necessary.
Setting Performance Requirements
Determining the appropriate performance threshold will require ongoing dialogue and input from various stakeholders, including potential users. There are several considerations:
User Expectations: Inhabitants’ wants, needs, and available resources will play a significant role in defining acceptable performance levels.
Justifying the Investment: The level of protection must also justify the effort and resources required to produce and deploy the shelters. For example, a hypothetical 90% survival rate might make this intervention compelling compared to doing nothing. On the other hand, if the expected success rate falls near or below 1%, the intervention is unlikely to garner much support.
My initial intuition is that even if 70% of the units function effectively in a crisis, this would be a success. However, these thresholds should not be set arbitrarily—they should involve input from a wide range of stakeholders, particularly those who might depend on these shelters for survival.