Hmm. I think we might be misunderstanding each other here.
When I say Gwern’s post leads to “approximately Kelly”, I’m not trying to say it’s exactly Kelly. I’m not even trying to say that it converges to Kelly. I’m trying to say that it’s much closer to Kelly than it is to myopic expectation maximization.
Similarly, I’m not trying to say that Kelly maximizes expected value. I am trying to say that expected value doesn’t summarize wipeout risk in a way that is intuitive for humans, and that those who expect myopic expected values to persist across a time series of games in situations like this will be very surprised.
I do think that people making myopic decisions in situation’s like Bob’s should in general bet Kelly instead of expected value maximizing. I think an understanding of what ergodicity is, and whether a statistic is ergodic, helps to explain why. Given this, I also think that it makes sense to ask whether you should be looking for bets that are more ergodic in their ensemble average (like index funds rather than poker).
In general, I find expectation maximization unsatisfying because I don’t think it deals well with wipeout risk. Reading Ole Peters helped me understand why people were so excited about Kelly, and reading this article by Gwern helped me understand that I had been interpreting expectation maximization in a very limited way in the first place.
In the limit of infinite bets like Bob’s with no cap, myopic expectation maximization at each step means that most runs will go bankrupt. I don’t find the extremely high returns in the infinitesimally probable regions to make up for that. I’d like a principled way of expressing that which doesn’t rely on having a specific type of utility function, and I think Peters’ ergodicity economics gets most but not all the way there.
Other than that, I don’t disagree with anything you’ve said.
It’s not clear to me that it’s impossible, and I think it’s worth exploring the idea further before giving up on it. In particular, I think that saying “optimizing expected money is the thing that Bob cares about” assumes the conclusion. Bob cares about having the most money he can actually get, so I don’t see why he should do the thing that almost-surely leads to bankruptcy. In the limit as the number of bets goes to infinity, the probability of not being bankrupt will converge to 0. It’s weird to me that something of measure 0 probability can swamp the entirety of the rest of the probability.