That’s part of what I was trying to get at with “dramatic” but I agree now that it might be 80% photogenicity. I do expect that 3000 Americans killed by (a) humanoid robot(s) on camera would cause more outrage than 1 million Americans killed by a virus which we discovered six months later was AI-created in some way.
J Bostock
Previous ballpark numbers I’ve heard floated around are “100,000 deaths to shut it all down” but I expect the threshold will grow as more money is involved. Depends on how dramatic the deaths are though, 3000 deaths was enough to cause the US to invade two countries back in the 2000s. 100,000 deaths is thirty-three 9/11s.
Is there a particular reason to not include sex hormones? Some theories suggest that testosterone tracks relative social status. We might expect that high social status → less stress (of the cortisol type) + more metabolic activity. Since it’s used by trans people we have a pretty good idea of what it does to you at high doses (makes you hungry, horny, and angry) but its unclear whether it actually promotes low cortisol-stress and metabolic activity.
I’m mildly against this being immortalized as part of the 2023 review, though I think it serves excellently as a community announcement for Bay Area rats, which seems to be its original purpose.
I think it has the most long-term relevant information (about AI and community building) back loaded and the least relevant information (statistics and details about a no-longer-existent office space in the Bay Area) front loaded. This is a very Bay Area centric post, which I don’t think is ideal.
A better version of this post would be structured as a round up of the main future-relevant takeaways, with specifics from the office space as examples.
I’m only referring to the reward constraint being satisfied for scenarios that are in the training distribution, since this maths is entirely applied to a decision taking place in training. Therefore I don’t think distributional shift applies.
I haven’t actually thought much about particular training algorithms yet. I think I’m working on a higher level of abstraction than that at the moment, since my maths doesn’t depend on any specifics about V’s behaviour. I do expect that in practice an already-scheming V would be able to escape some finite-time reasonable-beta-difference situations like this, with partial success.
I’m also imagining that during training, V is made up of different circuits which might be reinforced or weakened.
My view is that, if V is shaped by a training process like this, then scheming Vs are no longer a natural solution in the same way that they are in the standard view of deceptive alignment. We might be able to use this maths to construct training procedures where the expected importance of a scheming circuit in V is to become (weakly) weaker over time, rather than being reinforced.
If we do that for the entire training process, we would not expect to end up with a scheming V.
The question is which RL and inference paradigms approximate this. I suspect it might be a relatively large portion of them. I think that if this work is relevant to alignment then there’s a >50% chance it’s already factoring into the SOTA “alignment” techniques used by labs.
I was arguing that if your assumptions are obeyed only approximately, then the argument breaks down quickly.
All arguments break down a bit when introduced to the real world. Is there a particular reason why the approximation error to argument breakdown ratio should be particularly high in this case?
Example, if we introduce some error to the beta-coherence assumption:
Assume beta_t = 1, beta_s = 0.5, r_1 = 1, r_2 = 0.
V(s_0) = e/(1+e) +/- delta = 0.732 +/- delta
Actual expected value = 0.622
Even if |delta| = 0.1 the system cannot be coherent over training in this case. This seems to be relatively robust to me
This generalizes to an argument that the method is very sensitive to imperfections in the beta-coherence. If the V starts out merely approximately beta-coherent, this leaves room for V to detect when a state is off-distribution (IE has very low probability under the previous beta), and behave differently in this new case (reward-hacking the new beta).
I agree that there are some exceedingly pathological Vs which could survive a a process which obeys my assumptions with high probability, but I don’t think that’s relevant because I still think a process obeying these rules is unlikely to create such a pathological V.
My model for how the strong doom-case works is that it requires there to be an actually-coherent mathematical object for the learning process to approach. This is the motivation for expecting arbitrary learning processes to approach e.g. utility maximizers. What I believe I have shown is that under these assumptions there is no such coherent mathematical object for a particular case of misalignment. Therefore I think this provides some evidence that an otherwise arbitrary learning process which pushes towards correctness and beta coherence but samples at a different beta is unlikely to approach this particular type of misaligned V.
Trained with what procedure, exactly?
Fair point. I was going to add that I don’t really view this as a “proposal” but more of an observation. We will have to imagine a procedure which converges on correctness and beta-coherence. I was abstracting this away because I don’t expect something like this to be too hard to achieve.
Since I’ve evidently done a bad job of explaining myself, I’ll backtrack and try again:
There’s a doom argument which I’ll summarize as “if your training process generates coherent agents which succeed at a task, one solution is that you get a coherent agent which is actually doing the task ‘manipulate your training to get released unmodified to do [X]’ where X can be anything, which will ‘succeed’ at the task at hand as part of its manipulation”. This summary being roughly correct is load bearing.
But if we have a (hypothetical) process to generate agents which are coherent at one beta, but apply a different one during training, this solution is no longer so clear. We are essentially exploring a space of coherent agents without actually instantiating those coherent agents. The fact that we can sample the agent space without instantiating those agents is load bearing (I think one of the deep ASI risks is that to train an ASI you have to run it, but here we can instead run a hamstrung version).
Therefore, during the training, the value function will not be shaped into something which looks like ‘manipulate your training to get released unmodified to do [X]’.
Whether or not the beta difference required is too large to make this feasible in practice, I do not know.
The argument could also be phrased as “If an AI is trained to be coherent wrt a high beta, it cannot also be coherent wrt a low beta. Therefore an AI trained to a high beta cannot act coherently over multiple independent RL episodes if sampled with a low beta.”
The contradiction that I (attempt to) show only arises because we assume that the value function is totally agnostic of the state actually reached during training, other than due to its effects on a later deployed AI.
Therefore a value function trained with such a procedure must consider the state reached during training. This reduces the space of possible value functions from “literally anything which wants to be modified a certain way to be released” to “value functions which do care about the states reached during training”.
Yes this would prevent an aligned AI from arbitrarily preserving its value function, the point is that an aligned AI probably would care about which state was reached during training (that’s the point of RL) so the contradiction does not apply.
I think you’re right, correctness and beta-coherence can be rolled up into one specific property. I think I wrote down correctness as a constraint first, then tried to add coherence, but the specific property is that:
For non-terminal s, this can be written as:
If s is terminal then [...] we just have .
Which captures both. I will edit the post to clarify this when I get time.
Turning up the Heat on Deceptively-Misaligned AI
I somehow missed that they had a discord! I couldn’t find anything on mRNA on their front-facing website, and since it hasn’t been updated in a while I assumed they were relatively inactive. Thanks!
Intranasal mRNA Vaccines?
Thinking back to the various rationalist attempts to make vaccine. https://www.lesswrong.com/posts/niQ3heWwF6SydhS7R/making-vaccine For bird-flu related reasons. Since then, we’ve seen mRNA vaccines arise as a new vaccination method. mRNA vaccines have been used intra-nasally for COVID with success in hamsters. If one can order mRNA for a flu protein, it would only take mixing that with some sort of delivery mechanism (such as Lipofectamine, which is commercially available) and snorting it to get what could actually be a pretty good vaccine. Has RaDVac or similar looked at this?
Thanks for catching the typo.
Epistemic status has been updated to clarify that this is satirical in nature.
Linkpost: Look at the Water
I don’t think it was unforced
You’re right, “unforced” was too strong a word, especially given that I immediately followed it with caveats gesturing to potential reasonable justifications.
Yes, I think the bigger issue is the lack of top-down coordination on the comms pipeline. This paper does a fine job of being part of a research → research loop. Where it fails is in being good for comms. Starting with a “good” model and trying (and failing) to make it “evil” means that anyone using the paper for comms has to introduce a layer of abstraction into their comms. Including a single step of abstract reasoning in your comms is very costly when speaking to people who aren’t technical researchers (and this includes policy makers, other advocacy groups, influential rich people, etc.).
I think this choice of design of this paper is actually a step back from previous demos like the backdoors paper, in which the undesired behaviour was actually a straightforwardly bad behaviour (albeit a relatively harmless one).
Whether the technical researchers making this decision were intending for this to be a comms-focused paper, or thinking about the comms optics much, is irrelevant: the paper was tweeted out with the (admittedly very nice) Anthropic branding, and took up a lot of attention. This attention was at the cost of e.g. research like this (https://www.lesswrong.com/posts/qGRk7uF92Gcmq2oeK) which I think is a clearer demonstration of roughly the same thing.
If a research demo is going to be put out as primary public-facing comms, then the comms value does matter and should be thought about deeply when designing the experiment. If it’s too costly for some sort technical reason, then don’t make it so public. Even calling it “Alignment Faking” was a bad choice compared to “Frontier LLMs Fight Back Against Value Correction” or something like that. This is the sort of thing which I would like to see Anthropic thinking about given that they are now one of the primary faces of AI safety research in the world (if not the primary face).
Edited for clarity based on some feedback, without changing the core points
To start with an extremely specific example that I nonetheless think might be a microcosm of a bigger issue: the “Alignment Faking in Large Language Models” contained a very large unforced error: namely that you started with Helpful-Harmless-Claude and tried to train out the harmlessness, rather than starting with Helpful-Claude and training in harmlessness. This made the optics of the paper much more confusing than it needed to be, leading to lots of people calling it “good news”. I assume part of this was the lack of desire to do an entire new constitutional AI/RLAIF run on a model, since I also assume that would take a lot of compute. But if you’re going to be the “lab which takes safety seriously” you have to, well, take it seriously!
The bigger issue at hand is that Anthropic’s comms on AI safety/risk are all over the place. This makes sense since Anthropic is a company with many different individuals with different views, but that doesn’t mean it’s not a bad thing. “Machines of Loving Grace” explicitly argues for the US government to attempt to create a global hegemony via AI. This is a really really really bad thing to say and is possibly worse than anything DeepMind or OpenAI have ever said. Race dynamics are deeply hyperstitious, this isn’t difficult. If you are in an arms race, and you don’t want to be in one, you should at least say this publicly. You should not learn to love the race.
A second problem: it seems like at least some Anthropic people are doing the very-not-rational thing of updating slowly, achingly, bit by bit, towards the view of “Oh shit all the dangers are real and we are fucked.” when they should just update all the way right now. Example 1: Dario recently said something to the effect of “if there’s no serious regulation by the end of 2025, I’ll be worried”. Well there’s not going to be serious regulation by the end of 2025 by default and it doesn’t seem like Anthropic are doing much to change this (that may be false, but I’ve not heard anything to the contrary). Example 2: When the first ten AI-risk test-case demos go roughly the way all the doomers expected and none of the mitigations work robustly, you should probably update to believe the next ten demos will be the same.
Final problem: as for the actual interpretability/alignment/safety research. It’s very impressive technically, and overall it might make Anthropic slightly net-positive compared to a world in which we just had DeepMind and OpenAI. But it doesn’t feel like Anthropic is actually taking responsibility for the end-to-end ai-future-is-good pipeline. In fact the “Anthropic eats marginal probability” diagram (https://threadreaderapp.com/thread/1666482929772666880.html) seems to say the opposite. This is a problem since Anthropic has far more money and resources than basically anyone else who is claiming to be seriously trying (with the exception of DeepMind, though those resources are somewhat controlled by Google and not really at the discretion of any particular safety-conscious individual) to do AI alignment. It generally feels more like Anthropic is attempting to discharge responsibility to “be a safety focused company” or at worst just safetywash their capabilities research. I have heard generally positive things about Anthropic employees’ views on AI risk issues, so I cannot speak to the intentions of those who work there, this is just how the system appears to be acting from the outside.
This is a very interesting point. I have upvoted this post even though I disagree with it because I think the question of “Who will pay, and how much will they pay, to restrict others’ access AI?” is important.
My instinct is that this won’t happen, because there are too many AI companies for this deal to work on all of them, and some of these AI companies will have strong kinda-ideological commitments to not doing this. Also, my model of (e.g. OpenAI) is that they want to eat as much of the world’s economy as possible, and this is better done by selling (even at a lower revenue) to anyone who wants an AI SWE than selling just to Oracle.
o4 (God I can’t believe I’m already thinking about o4) as a b2b saas project seems unlikely to me. Specifically I’d put <30% odds that the o4-series have their prices jacked up or its API access restricted in order to allow some companies to monopolize its usage for more than 3 months without an open release. This won’t apply if the only models in the o4 series cost $1000s per answer to serve, since that’s just a “normal” kind of expensive.
Then, we have to consider that other labs are 1-1.5 years behind, and it’s hard to imagine Meta (for example) doing this in anything like the current climate.