But do they also generalize out of training distribution more similarly? If so, why?
Neither of them is going to generalize very well out of distribution, and to the extent they do it will be via looking for features that were present in-distribution. The old adage “to imagine 10-dimensional space, first imagine 3-space, then say 10 really hard”.
My guess is that basically every learning system which tractably approximates Bayesian updating on noisy high dimensional data is going to end up with roughly Gaussian OOD behavior. There’s been some experiments where (non-adversarially-chosen) OOD samples quickly degrade to uniform prior, but I don’t think that’s been super robustly studied.
The way humans generalize OOD is not that our visual systems are natively equipped to generalize to contexts they have no way of knowing about, that would be a true violation of no-free-lunch theorems, but that through linguistic reflection & deliberate experimentation some of us can sometimes get a handle on the new domain, and then we use language to communicate that handle to others who come up with things we didn’t, etc. OOD generalization is a process at the (sub)cultural & whole-nervous-system level, not something that individual chunks of the brain can do well on their own.
This is also confusing/concerning for me. Why would it be necessary or helpful to have such a large dataset to align the shape/texture bias with humans?
Well it might not be, but you need large datasets to motivate studying large models, as their performance on small datasets like imagenet is often only marginally better.
A 20b param ViT trained on 10m images at 224x224x3 is approximately 1 param for every 75 subpixels, and 2000 params for every image. Classification is an easy enough objective that it very likely just overfits, unless you regularize it a ton, at which point it might still have the expected shape bias at great expense. Training a 20b param model is expensive, I don’t think anyone has ever spent that much on a mere imagenet classifier, and public datasets >10x the size of imagenet with any kind of labels only started getting collected in 2021.
To motivate this a bit, humans don’t see in frames but let’s pretend we do. At 60fps for 12h/day for 10 years, that’s nearly 9.5 billion frames. Imagenet is 10 million images. Our visual cortex contains somewhere around 5 billion neurons, which is around 50 trillion parameters (at 1 param / synapse & 10k synapses / neuron, which is a number I remember being reasonable for the whole brain but vision might be 1 or 2 OOM special in either direction).
What track record?