I’m ashamed to say I don’t remember. That was the highlight. I think I have some notes on the conversation somewhere and I’ll try to remember to post here if I ever find it.
I can spell out the content of his Koan a little, if it wasn’t clear. It’s probably more like: look for things that are (not there). If you spend enough time in a particular landscape of ideas, you can (if you’re quiet and pay attention and aren’t busy jumping on bandwagons) get an idea of a hole, which you’re able to walk around but can’t directly see. In this way new ideas appear as something like residues from circumnavigating these holes. It’s my understanding that Khovanov homology was discovered like that, and this is not unusual in mathematics.
By the way, that’s partly why I think the prospect of AIs being creative mathematicians in the short term should not be discounted; if you see all the things you see all the holes.
There’s plenty, including a line of work by Carina Curto, Katrin Hess and others that is taken seriously by a number of mathematically inclined neuroscience people (Tom Burns if he’s reading can comment further). As far as I know this kind of work is the closest to breaking through into the mainstream. At some level you can think of homology as a natural way of preserving information in noisy systems, for reasons similar to why (co)homology of tori was a useful way for Kitaev to formulate his surface code. Whether or not real brains/NNs have some emergent computation that makes use of this is a separate question, I’m not aware of really compelling evidence.
There is more speculative but definitely interesting work by Matilde Marcolli. I believe Manin has thought about this (because he’s thought about everything) and if you have twenty years to acquire the prerequisites (gamma spaces!) you can gaze into deep pools by reading that too.