It’s worth noting that the reason we use clamps on the ends of the jumper cables is because pressure increases surface area in contact, which decreases resistance for the simple reason of Ohm’s law applied to parallel resistors. (Three 1k Ohm resistors have a parallel resistance of only 333 Ohms. It’s meaningless to give a single figure for copper → wet skin resistance without also giving the surface area for which the figure is valid.)
This means that incidental touching of metal is extremely unlikely to kill anyone, but accidentally clamping your finger, gripping metal tightly, or anything else that applies pressure to your skin will dramatically raise the risk.
According to Wikipedia, the threshold for fibrillation is 60 mA for AC, 300-500 mA for DC. On reflection, it seems I’d previously cached the AC value as the value for all currents, so that was skewing my argument.
Given these figures, a 1k Ohm total resistance (internal plus skin plus body) would lead to a 12 mA current (painful but not fibrillation-inducing), whereas 200 Ohms / 40 Ohms total resistance would be required for 12 VAC / VDC to be potentially lethal. So, yeah, now that I think about it, a car battery probably couldn’t be lethal unless conductors were actually puncturing the skin and touching the bloodstream directly (or covering a HUGE amount of surface area). I retract my claim.
Edit: OH! Except that Wikipedia says the threshold for fibrillation is a mere 10 µA if the current is from electrodes that establish a circuit through the heart. THAT’s the figure I’d seen before and cached in my head. Still, that’s not a likely situation to arise when using jumper cables, so my claim remains retracted.