This is a comment from Andy Zou, who led the RepE paper but doesn’t have a LW account:
“Yea I think it’s fair to say probes is a technique under rep reading which is under RepE (https://www.ai-transparency.org/). Though I did want to mention, in many settings, LAT is performing unsupervised learning with PCA and does not use any labels. And we find regular linear probing often does not generalize well and is ineffective for (causal) model control (e.g., details in section 5). So equating LAT to regular probing might be an oversimplification. How to best elicit the desired neural activity patterns requires careful design of 1) the experimental task and 2) locations to read the neural activity, which contribute to the success of LAT over regular probing (section 3.1.1).
In general, we have shown some promise of monitoring high-level representations for harmful (or catastrophic) intents/behaviors. It’s exciting to see follow-ups in this direction which demonstrate more fine-grained monitoring/control.”
Unfortunately I don’t think academia will handle this by default. The current field of machine unlearning focuses on a narrow threat model where the goal is to eliminate the impact of individual training datapoints on the trained model. Here’s the NeurIPS 2023 Machine Unlearning Challenge task:
But if hazardous knowledge can be pinpointed to individual training datapoints, perhaps you could simply remove those points from the dataset before training. The more difficult threat model involves removing hazardous knowledge that can be synthesized from many datapoints which are individually innocuous. For example, a model might learn to conduct cyberattacks or advise in the acquisition of biological weapons after being trained on textbooks about computer science and biology. It’s unclear the extent to which this kind of hazardous knowledge can be removed without harming standard capabilities, but most of the current field of machine unlearning is not even working on this more ambitious problem.