An oddly somewhat relevant article on the information needed for specifying the brain. It is a biologist tearing a strip out of kurzweil for suggesting that we’ll be able reverse engineer the human brain in a decade by looking at the genome.
P.Z. is misreading a quote from a secondhand report. Kurzweil is not talking about reading out the genome and simulating the brain from that, but about using improvements in neuroimaging to inform input-output models of brain regions. The genome point is just an indicator of the limited number of component types involved, which helps to constrain estimates of difficulty.
Edit: Kurzweil has now replied, more or less along the lines above.
Kurzweil’s analysis is simply wrong. Here’s the gist of my refutation of it:
“So, who is right? Does the brain’s design fit into the genome? - or not?
The detailed form of proteins arises from a combination of the nucleotide sequence that specifies them, the cytoplasmic environment in which gene expression takes place, and the laws of physics.
We can safely ignore the contribution of cytoplasmic inheritance—however, the contribution of the laws of physics is harder to discount. At first sight, it may seem simply absurd to argue that the laws of physics contain design information relating to the construction of the human brain. However there is a well-established mechanism by which physical law may do just that—an idea known as the anthropic principle. This argues that the universe we observe must necessarily permit the emergence of intelligent agents. If that involves a coding the design of the brains of intelligent agents into the laws of physics then: so be it. There are plenty of apparently-arbitrary constants in physics where such information could conceivably be encoded: the fine structure constant, the cosmological constant, Planck’s constant—and so on.
At the moment, it is not even possible to bound the quantity of brain-design information so encoded. When we get machine intelligence, we will have an independent estimate of the complexity of the design required to produce an intelligent agent. Alternatively, when we know what the laws of physics are, we may be able to bound the quantity of information encoded by them. However, today neither option is available to us.”
I agree with your analysis, but I also understand where PZ is coming from. You write above that the portion of the genome coding for the brain is small. PZ replies that the small part of the genome you are referring to does not by itself explain the brain; you also need to understand the decoding algorithm—itself scattered through the whole genome and perhaps also the zygotic “epigenome”. You might perhaps clarify that what you were talking about with “small portion of the genome” was the Kolmogorov complexity, so you were already including the decoding algorithm in your estimate.
The problem is, how do you get the point through to PZ and other biologists who come at the question from an evo-devo PoV? I think that someone ought to write a comment correcting PZ, but in order to do so, the commenter would have to speak the languages of three fields—neuroscience, evo-devo, and information-theory. And understand all three well enough to unpack the jargon to laymen without thereby loosing credibility with people who do know one or more of the three fields.
Obviously the genome alone doesn’t build a brain. I wonder how many “bits” I should add on for the normal environment that’s also required (in terms of how much additional complexity is needed to get the first artificial mind that can learn about the world given additional sensory-like inputs). Probably not too many.
The portion of the genome coding for brain architecture is a lot smaller than Windows 7, bit-wise.
An oddly somewhat relevant article on the information needed for specifying the brain. It is a biologist tearing a strip out of kurzweil for suggesting that we’ll be able reverse engineer the human brain in a decade by looking at the genome.
P.Z. is misreading a quote from a secondhand report. Kurzweil is not talking about reading out the genome and simulating the brain from that, but about using improvements in neuroimaging to inform input-output models of brain regions. The genome point is just an indicator of the limited number of component types involved, which helps to constrain estimates of difficulty.
Edit: Kurzweil has now replied, more or less along the lines above.
Kurzweil’s analysis is simply wrong. Here’s the gist of my refutation of it:
“So, who is right? Does the brain’s design fit into the genome? - or not?
The detailed form of proteins arises from a combination of the nucleotide sequence that specifies them, the cytoplasmic environment in which gene expression takes place, and the laws of physics.
We can safely ignore the contribution of cytoplasmic inheritance—however, the contribution of the laws of physics is harder to discount. At first sight, it may seem simply absurd to argue that the laws of physics contain design information relating to the construction of the human brain. However there is a well-established mechanism by which physical law may do just that—an idea known as the anthropic principle. This argues that the universe we observe must necessarily permit the emergence of intelligent agents. If that involves a coding the design of the brains of intelligent agents into the laws of physics then: so be it. There are plenty of apparently-arbitrary constants in physics where such information could conceivably be encoded: the fine structure constant, the cosmological constant, Planck’s constant—and so on.
At the moment, it is not even possible to bound the quantity of brain-design information so encoded. When we get machine intelligence, we will have an independent estimate of the complexity of the design required to produce an intelligent agent. Alternatively, when we know what the laws of physics are, we may be able to bound the quantity of information encoded by them. However, today neither option is available to us.”
http://alife.co.uk/essays/how_long_before_superintelligence/
Wired really messed up the flow of the talk in that case. Is it based off a singularity summit talk?
I agree with your analysis, but I also understand where PZ is coming from. You write above that the portion of the genome coding for the brain is small. PZ replies that the small part of the genome you are referring to does not by itself explain the brain; you also need to understand the decoding algorithm—itself scattered through the whole genome and perhaps also the zygotic “epigenome”. You might perhaps clarify that what you were talking about with “small portion of the genome” was the Kolmogorov complexity, so you were already including the decoding algorithm in your estimate.
The problem is, how do you get the point through to PZ and other biologists who come at the question from an evo-devo PoV? I think that someone ought to write a comment correcting PZ, but in order to do so, the commenter would have to speak the languages of three fields—neuroscience, evo-devo, and information-theory. And understand all three well enough to unpack the jargon to laymen without thereby loosing credibility with people who do know one or more of the three fields.
Why bother? PZ’s rather misguided rant isn’t doing very much damage. Just ignore him, I figure.
Maybe it is a slow news day. PZ’s rant got Slashdotted:
http://science.slashdot.org/story/10/08/17/1536233/Ray-Kurzweil-Does-Not-Understand-the-Brain
PZ has stooped pretty low with the publicity recently:
http://scienceblogs.com/pharyngula/2010/08/the_eva_mendes_sex_tape.php
Maybe he was trolling with his Kurzweil rant. He does have a history with this subject matter, though:
http://scienceblogs.com/pharyngula/2009/02/singularly_silly_singularity.php
Obviously the genome alone doesn’t build a brain. I wonder how many “bits” I should add on for the normal environment that’s also required (in terms of how much additional complexity is needed to get the first artificial mind that can learn about the world given additional sensory-like inputs). Probably not too many.
Thanks, this is useful to know. Will revise beliefs accordingly.