Kurzweil’s analysis is simply wrong. Here’s the gist of my refutation of it:
“So, who is right? Does the brain’s design fit into the genome? - or not?
The detailed form of proteins arises from a combination of the nucleotide sequence that specifies them, the cytoplasmic environment in which gene expression takes place, and the laws of physics.
We can safely ignore the contribution of cytoplasmic inheritance—however, the contribution of the laws of physics is harder to discount. At first sight, it may seem simply absurd to argue that the laws of physics contain design information relating to the construction of the human brain. However there is a well-established mechanism by which physical law may do just that—an idea known as the anthropic principle. This argues that the universe we observe must necessarily permit the emergence of intelligent agents. If that involves a coding the design of the brains of intelligent agents into the laws of physics then: so be it. There are plenty of apparently-arbitrary constants in physics where such information could conceivably be encoded: the fine structure constant, the cosmological constant, Planck’s constant—and so on.
At the moment, it is not even possible to bound the quantity of brain-design information so encoded. When we get machine intelligence, we will have an independent estimate of the complexity of the design required to produce an intelligent agent. Alternatively, when we know what the laws of physics are, we may be able to bound the quantity of information encoded by them. However, today neither option is available to us.”
Kurzweil’s analysis is simply wrong. Here’s the gist of my refutation of it:
“So, who is right? Does the brain’s design fit into the genome? - or not?
The detailed form of proteins arises from a combination of the nucleotide sequence that specifies them, the cytoplasmic environment in which gene expression takes place, and the laws of physics.
We can safely ignore the contribution of cytoplasmic inheritance—however, the contribution of the laws of physics is harder to discount. At first sight, it may seem simply absurd to argue that the laws of physics contain design information relating to the construction of the human brain. However there is a well-established mechanism by which physical law may do just that—an idea known as the anthropic principle. This argues that the universe we observe must necessarily permit the emergence of intelligent agents. If that involves a coding the design of the brains of intelligent agents into the laws of physics then: so be it. There are plenty of apparently-arbitrary constants in physics where such information could conceivably be encoded: the fine structure constant, the cosmological constant, Planck’s constant—and so on.
At the moment, it is not even possible to bound the quantity of brain-design information so encoded. When we get machine intelligence, we will have an independent estimate of the complexity of the design required to produce an intelligent agent. Alternatively, when we know what the laws of physics are, we may be able to bound the quantity of information encoded by them. However, today neither option is available to us.”
http://alife.co.uk/essays/how_long_before_superintelligence/