To the second point, because humans are already general intelligences.
But more seriously, I think the monolithic AI approach will ultimately be uncompetitive with modular AI for real life applications. Modular AI dramatically reduces the search space. And I would contend that prediction over complex real life systems over long-term timescales will always be data-starved. Therefore being able to reduce your search space will be a critical competitive advantage, and worth the hit from having suboptimal interfaces.
Why is this relevant for alignment? Because you can train and evaluate the AI modules independently, individually they are much less intelligent and less likely to be deceptive, you can monitor their communications, etc.
To the second point, because humans are already general intelligences.
But more seriously, I think the monolithic AI approach will ultimately be uncompetitive with modular AI for real life applications. Modular AI dramatically reduces the search space. And I would contend that prediction over complex real life systems over long-term timescales will always be data-starved. Therefore being able to reduce your search space will be a critical competitive advantage, and worth the hit from having suboptimal interfaces.
Why is this relevant for alignment? Because you can train and evaluate the AI modules independently, individually they are much less intelligent and less likely to be deceptive, you can monitor their communications, etc.