Energy is always an engineering constraint: it’s a primary constraint on Moore’s Law, and thus also a primary limiter on a fast takeoff with GPUs (because world power supply isn’t enough to support net ANN compute much larger than current brain population net compute).
But again I already indicated it’s probably not a ‘taut constraint’ on early AGI in terms of economic cost—at least in my model of likely requirements for early not-smarter-than-human AGI.
Also yes additionally longer term we can expect energy to become a larger fraction of economic cost—through some combination of more efficient chip production, or just the slowing of moore’s law itself (which implies chips holding value for much longer, thus reducing the dominant hardware depreciation component of rental costs)
Energy is always an engineering constraint: it’s a primary constraint on Moore’s Law, and thus also a primary limiter on a fast takeoff with GPUs (because world power supply isn’t enough to support net ANN compute much larger than current brain population net compute).
But again I already indicated it’s probably not a ‘taut constraint’ on early AGI in terms of economic cost—at least in my model of likely requirements for early not-smarter-than-human AGI.
Also yes additionally longer term we can expect energy to become a larger fraction of economic cost—through some combination of more efficient chip production, or just the slowing of moore’s law itself (which implies chips holding value for much longer, thus reducing the dominant hardware depreciation component of rental costs)