The unrolling of the episode is still very cheap. It’s a lot cheaper to unroll a Dreamerv3 for 16 steps, then it is to go out into the world and run a robot in a real-world task for 16 steps and try to get the NN to propagate updated value estimates the entire way...
But I’m not advocating against MBRL, so this isn’t the relevant counterfactual. A pure MBRL-based approach would update the value function to match the rollouts, but e.g. DreamerV3 also uses the value function in a Bellman-like manner to e.g. impute the future reward at the end of an episode. This allows it to plan for further than the 16 steps it rolls out, but it would be computationally intractable to roll out for as far as this ends up planning.
if the environment is difficult, a tree search with a very small planning budget like just a few rollouts is probably going to have quite noisy choices/estimates too. No free lunches.
It’s possible for there to be a kind of chaos where the analytic gradients blow up yet discrete differences have predictable effects. Bifurcations etc..
They won’t be controlled by something as simple as a single fixed reward function, I think we can agree on that. But I don’t find successor-function like representations to be too promising as a direction for how to generalize agents, or, in fact, any attempt to fancily hand-engineer in these sorts of approaches into DRL agents.
These things should be learned. For example, leaning into Decision Transformers and using a lot more conditionalizing through metadata and relying on meta-learning seems much more promising. (When it comes to generative models, if conditioning isn’t solving your problems, you’re just not using enough conditioning or generative modeling.) A prompt can describe agents and reward functions and the base agent executes that, and whatever is useful about successor-like representations just emerges automatically internally as the solution to the overall family of tasks in turning histories into actions.
I agree with things needing to be learned; using the actual states themselves was more of a toy model (because we have mathematical models for MDPs but we don’t have mathematical models for “capabilities researchers will find something that can be Learned”), and I’d expect something else to happen. If I was to run off to implement this now, I’d be using learned embeddings of states, rather than states themselves. Though of course even learned embeddings have their problems.
The trouble with just saying “let’s use decision transformers” is twofold. First, we still need to actually define the feedback system. One option is to just define reward as the feedback, but as you mention, that’s not nuanced enough. You could use some system that’s trained to mimic human labels as the ground truth, but this kind of system has flaws for standard alignment reasons.
It seems to me that capabilities researchers are eventually going to find some clever feedback system to use. It will to a great extent be learned, but they’re going to need to figure out the learning method too.
But I’m not advocating against MBRL, so this isn’t the relevant counterfactual. A pure MBRL-based approach would update the value function to match the rollouts, but e.g. DreamerV3 also uses the value function in a Bellman-like manner to e.g. impute the future reward at the end of an episode. This allows it to plan for further than the 16 steps it rolls out, but it would be computationally intractable to roll out for as far as this ends up planning.
It’s possible for there to be a kind of chaos where the analytic gradients blow up yet discrete differences have predictable effects. Bifurcations etc..
I agree with things needing to be learned; using the actual states themselves was more of a toy model (because we have mathematical models for MDPs but we don’t have mathematical models for “capabilities researchers will find something that can be Learned”), and I’d expect something else to happen. If I was to run off to implement this now, I’d be using learned embeddings of states, rather than states themselves. Though of course even learned embeddings have their problems.
The trouble with just saying “let’s use decision transformers” is twofold. First, we still need to actually define the feedback system. One option is to just define reward as the feedback, but as you mention, that’s not nuanced enough. You could use some system that’s trained to mimic human labels as the ground truth, but this kind of system has flaws for standard alignment reasons.
It seems to me that capabilities researchers are eventually going to find some clever feedback system to use. It will to a great extent be learned, but they’re going to need to figure out the learning method too.