I assume that the one-boxing gene makes a person generically more likely to favor the one-boxing solution to Newcomb. But what about when people learn about the setup of this particular problem? Does the correlation between having the one-boxing gene and inclining toward one-boxing still hold? Are people who one-box only because of EDT (even though they would have two-boxed before considering decision theory) still more likely to have the one-boxing gene? If so, then I’d be more inclined to force myself to one-box. If not, then I’d say that the apparent correlation between choosing one-boxing and winning breaks down when the one-boxing is forced. (Note: I haven’t thought a lot about this and am still fairly confused on this topic.)
I’m reminded of the problem of reference-class forecasting and trying to determine which reference class (all one-boxers? or only grudging one-boxers who decided to one-box because of EDT?) to apply for making probability judgments. In the limit where the reference class consists of molecule-for-molecule copies of yourself, you should obviously do what made the most of them win.
But what about when people learn about the setup of this particular problem? Does the correlation between having the one-boxing gene and inclining toward one-boxing still hold?
Yes, it should also hold in this case. Knowing about the study could be part of the problem and the subjects of the initial study could be lied to about a study. The idea of the “genetic Newcomb problem” is that the two-boxing gene is less intuitive than CGTA and that its workings are mysterious. It could make you be sure that you have or don’t have the gene. It could make be comfortable with decision theories whose names start with ‘C’, interpret genetical Newcomb problem studies in a certain way etc. The only thing that we know is that is causes us to two-box, in the end. For CGTA, on the other hand, we have a very strong intuition that it causes a “tickle” or so that could be easily overridden by us knowing about the first study (which correlates chewing gum with throat abscesses). It could not possibly influence what we think about CDT vs. EDT etc.! But this intuition is not part of the original description of the problem.
If there were a perfect correlation between choosing to one-box and having the one-box gene (i.e., everyone who one-boxes has the one-box gene, and everyone who two-boxes has the two-box gene, in all possible circumstances), then it’s obvious that you should one-box, since that implies you must win more. This would be similar to the original Newcomb problem, where Omega also perfectly predicts your choice. Unfortunately, if you really will follow the dictates of your genes under all possible circumstances, then telling someone what she should do is useless, since she will do what her genes dictate.
The more interesting and difficult case is when the correlation between gene and choice isn’t perfect.
I assume that the one-boxing gene makes a person generically more likely to favor the one-boxing solution to Newcomb. But what about when people learn about the setup of this particular problem? Does the correlation between having the one-boxing gene and inclining toward one-boxing still hold? Are people who one-box only because of EDT (even though they would have two-boxed before considering decision theory) still more likely to have the one-boxing gene? If so, then I’d be more inclined to force myself to one-box. If not, then I’d say that the apparent correlation between choosing one-boxing and winning breaks down when the one-boxing is forced. (Note: I haven’t thought a lot about this and am still fairly confused on this topic.)
I’m reminded of the problem of reference-class forecasting and trying to determine which reference class (all one-boxers? or only grudging one-boxers who decided to one-box because of EDT?) to apply for making probability judgments. In the limit where the reference class consists of molecule-for-molecule copies of yourself, you should obviously do what made the most of them win.
Yes, it should also hold in this case. Knowing about the study could be part of the problem and the subjects of the initial study could be lied to about a study. The idea of the “genetic Newcomb problem” is that the two-boxing gene is less intuitive than CGTA and that its workings are mysterious. It could make you be sure that you have or don’t have the gene. It could make be comfortable with decision theories whose names start with ‘C’, interpret genetical Newcomb problem studies in a certain way etc. The only thing that we know is that is causes us to two-box, in the end. For CGTA, on the other hand, we have a very strong intuition that it causes a “tickle” or so that could be easily overridden by us knowing about the first study (which correlates chewing gum with throat abscesses). It could not possibly influence what we think about CDT vs. EDT etc.! But this intuition is not part of the original description of the problem.
If there were a perfect correlation between choosing to one-box and having the one-box gene (i.e., everyone who one-boxes has the one-box gene, and everyone who two-boxes has the two-box gene, in all possible circumstances), then it’s obvious that you should one-box, since that implies you must win more. This would be similar to the original Newcomb problem, where Omega also perfectly predicts your choice. Unfortunately, if you really will follow the dictates of your genes under all possible circumstances, then telling someone what she should do is useless, since she will do what her genes dictate.
The more interesting and difficult case is when the correlation between gene and choice isn’t perfect.
(moved comment)