the author spent hours being excited about this stuff without bothering to learn that we have ~20 billion cortical neurons, not 20 trillion,
yeah.
I don’t know whether orcas are supersmart. A couple remarks:
I don’t think it makes that much sense to just look at cortical neuron counts. Big bodies ask for many neurons, including cortical motor neurons. Do cetaceans have really big motor cortices? Visual cortices? Olfactory bulbs? Keyword “allometry”. Yes, brains are plastic, but that doesn’t mean orcas are actually ever doing higher mathematics with their brains.
Scale matters, but I doubt it’s very close to being the only thing! Humans likely had genetic adaptations for neuroanatomical phenotypes selected-for by some of: language; tool-making; persisting transient mental content; intent-inference; intent-sharing; mental simulation; prey prediction; deception; social learning; teaching; niche construction/expansion/migration. Orcas have a few of these. But how many, how much, for how long, in what range of situations and manifestations? Or do you think a cow brain scaled to 40 billion neurons would be superhuman?
Culture matters. The Greeks could be great philosophers… But could a kid living in 8000 BCE, who gets to text message with an advanced alien civilization of kinda dumb people, become a cutting edge philosopher in the alien culture? Even though almost everyone ze interacts with is preagricultural, preliterate? I dunno, maybe? Still seems kinda hard actually?
Regardless of all this, talking to orcas would be super cool, go for it lol.
Superbabies is good. It would actually work. It’s not actually that hard. There’s lots of investment already in component science/tech. Orcas doesn’t scale. No one cares about orcas. There’s not hundreds of scientists and hundreds of millions in orca communications research. Etc. The sense of this plan being weird is a good sense to investigate further. It’s possible for superficial weirdness to be wrong, but don’t dismiss the weirdness out of hand.
I don’t think it makes that much sense to just look at cortical neuron counts. Big bodies ask for many neurons, including cortical motor neurons. Do cetaceans have really big motor cortices? Visual cortices? Olfactory bulbs? Keyword “allometry”. Yes, brains are plastic, but that doesn’t mean orcas are actually ever doing higher mathematics with their brains.
Scale matters, but I doubt it’s very close to being the only thing! Humans likely had genetic adaptations for neuroanatomical phenotypes selected-for by some of: language; tool-making; persisting transient mental content; intent-inference; intent-sharing; mental simulation; prey prediction; deception; social learning; teaching; niche construction/expansion/migration. Orcas have a few of these. But how many, how much, for how long, in what range of situations and manifestations?
I already considered this. (I just posted a question about this.) I don’t have good information on to what extent orcas have those, but my guesses are already reflected in my overall guess in the post. Why do you think orcas have few of those? For me it seems plausibe that orcas have everything except tool use and niche construction.
I do think there was some significant selection for some kind of intelligence in dolphins and orcas—the main question here is whether being optimized on tool use (IF that was a significant driver in what selected humans for intelligence) would be significantly more useful for having the brain potential generalize to doing science than if the brains were optimized because of social dynamics or hunting strategies.
But of course there are other considerations like “maybe you need fully recursive language to be able to have the abstract reasoning take off, and this might very well come from some adaptations that are not just about neoron counts, and maybe orcas don’t have that”.
I already took all my current uncertain consideration on this into account when I said “50% that they would be superhuman at science if they had similar quality and quantity of science education as scientists and were motivated for this”.
Or do you think a cow brain scaled to 40 billion neurons would be superhuman?
I don’t know what you’re asking for here. I don’t think organisms end up with 40 billion cortical neurons without either some strong selection for at least some sub-dimensions of intelligence, or being as big as Godzilla.
I’m not really excited about just smushing together more brain tissue without it having been optimized to work well together, but orca brains were optimized.
Culture matters. The Greeks could be great philosophers… But could a kid living in 8000 BCE, who gets to text message with an advanced alien civilization of kinda dumb people, become a cutting edge philosopher in the alien culture? Even though almost everyone ze interacts with is preagricultural, preliterate? I dunno, maybe? Still seems kinda hard actually?
Yep that’s why I’m only at like 15% that we get very significant results out of it in the next 30 years even if we tried hard. (aka 30% conditional on orcas being smart enough.)
Superbabies is good. It would actually work. It’s not actually that hard. There’s lots of investment already in component science/tech. Orcas doesn’t scale. No one cares about orcas. There’s not hundreds of scientists and hundreds of millions in orca communications research. Etc. The sense of this plan being weird is a good sense to investigate further. It’s possible for superficial weirdness to be wrong, but don’t dismiss the weirdness out of hand.
I mean if Orcas are smarter they might be super vastly smarter so you wouldn’t need that many.
Superbabies would work well given multiple generations but also only like 30% that we’d get +7std humans born within 10 years even if we tried similarly hard[1], and I think it’s pretty unlikely we have more than 40 years left without strong governance success. (E.g. afaik we still have problems cloning primates well (even though it’s been a thing for long) and those are just sub-difficulties[2] of e.g. creating superbabies through repeated embryo selection.)
Yeah I pretty much agree with this assessment. I think you could probably get to 80% with 100 million and ten years and maybe 50% with 30 million and 7 years. Perhaps I’m optimistic, but right now the entire field is bottlenecked by the need for $4 million to do primate testing.
(For reference I think Tsvi and GeneSmith have much more relevant knowledge for evaluating the chance of superbabies being feasible and I updated my guess to like 78%.)
(As it happens I also became more optimistic about the orca plan (especially in terms of how much it would cost and how long it would take, but also a bit in how likely I think it is that orcas would actually study science) (see footnote 4 in post). For <=30y timelines I think the orca plan is a bit more promising, though overall the superbabies plan is more promising/important. I’m now seriously considering pivoting to the orca plan though.) (EDIT: tbc I’m considering pivoting from alignment research, not superbaby research.)
I don’t think organisms end up with 40 billion cortical neurons without either some strong selection for at least some sub-dimensions of intelligence, or being as big as Godzilla.
One could naively expect that the neuron count (especially touch and motor) sensory processing modules are proportional to the surface area of an organism. However I think this is unrealistic: Bears don’t need nearly as fine precision on what square centimeter of skin was touched (or what millimeter the paw moves) than mice, and generally this is because precision gets less relevant given body size.
So let’s say the precision an organism needs is proportional to the square root of the 1-dimensional-size (aka sqrt(surface_area)) of the organism. Aka if a mice is 5cm tall and a bear 2m, the spacing between sensors on the mouse skin vs on the bear skin would be sqrt(0.05) vs sqrt(2). The number of sensors on the skin surface is proportional to the square of the distancing between sensors, so the overall number of sensors is proportional to the 1-dimensional-size (aka sqrt(surface_area)).
A brown bear has 250million neorons in the neocortex and is maybe 2m tall. So to get just by scaling size to 40billion neorons an organism would have to be 40⁄0.25 * 2m = 320m tall. So actually bigger than godzilla.
I’m not gonna read the reddit post because
it’s an eyebleed wall of text,
the author spent hours being excited about this stuff without bothering to learn that we have ~20 billion cortical neurons, not 20 trillion,
yeah.
I don’t know whether orcas are supersmart. A couple remarks:
I don’t think it makes that much sense to just look at cortical neuron counts. Big bodies ask for many neurons, including cortical motor neurons. Do cetaceans have really big motor cortices? Visual cortices? Olfactory bulbs? Keyword “allometry”. Yes, brains are plastic, but that doesn’t mean orcas are actually ever doing higher mathematics with their brains.
Scale matters, but I doubt it’s very close to being the only thing! Humans likely had genetic adaptations for neuroanatomical phenotypes selected-for by some of: language; tool-making; persisting transient mental content; intent-inference; intent-sharing; mental simulation; prey prediction; deception; social learning; teaching; niche construction/expansion/migration. Orcas have a few of these. But how many, how much, for how long, in what range of situations and manifestations? Or do you think a cow brain scaled to 40 billion neurons would be superhuman?
Culture matters. The Greeks could be great philosophers… But could a kid living in 8000 BCE, who gets to text message with an advanced alien civilization of kinda dumb people, become a cutting edge philosopher in the alien culture? Even though almost everyone ze interacts with is preagricultural, preliterate? I dunno, maybe? Still seems kinda hard actually?
Regardless of all this, talking to orcas would be super cool, go for it lol.
Superbabies is good. It would actually work. It’s not actually that hard. There’s lots of investment already in component science/tech. Orcas doesn’t scale. No one cares about orcas. There’s not hundreds of scientists and hundreds of millions in orca communications research. Etc. The sense of this plan being weird is a good sense to investigate further. It’s possible for superficial weirdness to be wrong, but don’t dismiss the weirdness out of hand.
See this comment.
I already considered this. (I just posted a question about this.) I don’t have good information on to what extent orcas have those, but my guesses are already reflected in my overall guess in the post.
Why do you think orcas have few of those? For me it seems plausibe that orcas have everything except tool use and niche construction.
I do think there was some significant selection for some kind of intelligence in dolphins and orcas—the main question here is whether being optimized on tool use (IF that was a significant driver in what selected humans for intelligence) would be significantly more useful for having the brain potential generalize to doing science than if the brains were optimized because of social dynamics or hunting strategies.
But of course there are other considerations like “maybe you need fully recursive language to be able to have the abstract reasoning take off, and this might very well come from some adaptations that are not just about neoron counts, and maybe orcas don’t have that”.
I already took all my current uncertain consideration on this into account when I said “50% that they would be superhuman at science if they had similar quality and quantity of science education as scientists and were motivated for this”.
I don’t know what you’re asking for here. I don’t think organisms end up with 40 billion cortical neurons without either some strong selection for at least some sub-dimensions of intelligence, or being as big as Godzilla.
I’m not really excited about just smushing together more brain tissue without it having been optimized to work well together, but orca brains were optimized.
Yep that’s why I’m only at like 15% that we get very significant results out of it in the next 30 years even if we tried hard. (aka 30% conditional on orcas being smart enough.)
I mean if Orcas are smarter they might be super vastly smarter so you wouldn’t need that many.
Superbabies would work well given multiple generations but also only like 30% that we’d get +7std humans born within 10 years even if we tried similarly hard[1], and I think it’s pretty unlikely we have more than 40 years left without strong governance success. (E.g. afaik we still have problems cloning primates well (even though it’s been a thing for long) and those are just sub-difficulties[2] of e.g. creating superbabies through repeated embryo selection.)
(e.g. 1 billon dollars and a few very smart geniuses going into trying to make communication with orcas work well)
Though I don’t know what much and wouldn’t shock me if we somehow find a way around this.
That would give more like a 90% chance of superbabies born in <10 years.
Yeah I pretty much agree with this assessment. I think you could probably get to 80% with 100 million and ten years and maybe 50% with 30 million and 7 years. Perhaps I’m optimistic, but right now the entire field is bottlenecked by the need for $4 million to do primate testing.
(For reference I think Tsvi and GeneSmith have much more relevant knowledge for evaluating the chance of superbabies being feasible and I updated my guess to like 78%.)
(As it happens I also became more optimistic about the orca plan (especially in terms of how much it would cost and how long it would take, but also a bit in how likely I think it is that orcas would actually study science) (see footnote 4 in post). For <=30y timelines I think the orca plan is a bit more promising, though overall the superbabies plan is more promising/important. I’m now seriously considering pivoting to the orca plan though.) (EDIT: tbc I’m considering pivoting from alignment research, not superbaby research.)
Justification for this:
One could naively expect that the neuron count (especially touch and motor) sensory processing modules are proportional to the surface area of an organism. However I think this is unrealistic: Bears don’t need nearly as fine precision on what square centimeter of skin was touched (or what millimeter the paw moves) than mice, and generally this is because precision gets less relevant given body size.
So let’s say the precision an organism needs is proportional to the square root of the 1-dimensional-size (aka sqrt(surface_area)) of the organism. Aka if a mice is 5cm tall and a bear 2m, the spacing between sensors on the mouse skin vs on the bear skin would be sqrt(0.05) vs sqrt(2). The number of sensors on the skin surface is proportional to the square of the distancing between sensors, so the overall number of sensors is proportional to the 1-dimensional-size (aka sqrt(surface_area)).
A brown bear has 250million neorons in the neocortex and is maybe 2m tall. So to get just by scaling size to 40billion neorons an organism would have to be 40⁄0.25 * 2m = 320m tall. So actually bigger than godzilla.