I’m guessing you weren’t aware of all the technical intricacies of this argument nor the necessity of bringing in white dwarf stars to clinch it. Now, it turns out you got lucky, because white dwarf stars do end out clinching the argument. But if there’s a facet of the argument you don’t understand, or there’s even a tiny possibility there’s a facet of the argument you don’t fully understand, you don’t go saying there’s zero probability.
Although I had considered the fact that the LHC reactions are closer to Earth-stationary, I hadn’t actually bothered to try and find out how likely multi-particle production from 10^12ev+ cosmic rays would be, and I wouldn’t even be sure how to calculate that in, in order to find out how likely ~Sol-stationary production events are, starting from very high energy cosmics.
Read page 848 of http://arxiv.org/ftp/arxiv/papers/0912/0912.5480.pdf
I’m guessing you weren’t aware of all the technical intricacies of this argument nor the necessity of bringing in white dwarf stars to clinch it. Now, it turns out you got lucky, because white dwarf stars do end out clinching the argument. But if there’s a facet of the argument you don’t understand, or there’s even a tiny possibility there’s a facet of the argument you don’t fully understand, you don’t go saying there’s zero probability.
Voted up, because you raise a good point.
Although I had considered the fact that the LHC reactions are closer to Earth-stationary, I hadn’t actually bothered to try and find out how likely multi-particle production from 10^12ev+ cosmic rays would be, and I wouldn’t even be sure how to calculate that in, in order to find out how likely ~Sol-stationary production events are, starting from very high energy cosmics.