Ok, so first you aren’t talking about progress really, you are linking data on productivity per worker. Which has gone up over the decades but at a slower pace. Why is that?
Well, the simplest theory is that suppose there is a class of tasks that are easy to automate, a second class that is hard but feasible to automate with simple computers, and a set of modestly complex tasks with hundreds of thousands of edge cases.
Well, today, almost none of the improvements in AI you have read about are being used where it counts, in factories and warehouses and mines and to control trucks. This is for several reasons, the biggest one being that for a “small” niche market it isn’t currently worth the engineering investment, the money is going into autonomous cars, and those aren’t finished, either.
So set [A] got automated in the 1970s. Set [B] gets automated slowly but only where the demand is extremely high for a product using this method, and where the cost of the automation is less than paying thousands of chinese factory workers instead. (they have gotten more expensive). Set [C] is all done by humans, but over time small tricks have reduced how many humans are required.
TFP doesn’t mean productivity per worker. It’s designed to identify economic progress which can’t be attributed to increases in labor or capital intensification aka technological progress applied to make an economy more efficient. Advances in automation should be captured under such a measurement.
You are saying “improvements in output not accomplished by spending more real dollars in equipment or having more people working”.
Hypothetically if we had sentient robots tommorow they would initially be priced extremely high, where the TCO over time of such a system is only slightly less than a worker. Are you positive your metric would correctly account for such a change? This would be a revolutionary improvement that would eventually change everything but in year 1 the new sentient robots are just doing existing jobs with less labor and very high capital costs
No it wouldn’t. TFP is in a sense, a lagging indicator. It captures economic benefits of technological progress but does not evaluate emerging technologies which have yet to make an economic imprint. That said, no AI I’m aware of that presently exists is remotely comparable to a human level AI. Level 5 self driving doesn’t even exist yet and once the computational power used to power AI catches up with Moore’s Law, the field seems due for a slowdown.
Ok, so first you aren’t talking about progress really, you are linking data on productivity per worker. Which has gone up over the decades but at a slower pace. Why is that?
Well, the simplest theory is that suppose there is a class of tasks that are easy to automate, a second class that is hard but feasible to automate with simple computers, and a set of modestly complex tasks with hundreds of thousands of edge cases.
Well, today, almost none of the improvements in AI you have read about are being used where it counts, in factories and warehouses and mines and to control trucks. This is for several reasons, the biggest one being that for a “small” niche market it isn’t currently worth the engineering investment, the money is going into autonomous cars, and those aren’t finished, either.
So set [A] got automated in the 1970s. Set [B] gets automated slowly but only where the demand is extremely high for a product using this method, and where the cost of the automation is less than paying thousands of chinese factory workers instead. (they have gotten more expensive). Set [C] is all done by humans, but over time small tricks have reduced how many humans are required.
So that would explain the observation.
TFP doesn’t mean productivity per worker. It’s designed to identify economic progress which can’t be attributed to increases in labor or capital intensification aka technological progress applied to make an economy more efficient. Advances in automation should be captured under such a measurement.
You are saying “improvements in output not accomplished by spending more real dollars in equipment or having more people working”.
Hypothetically if we had sentient robots tommorow they would initially be priced extremely high, where the TCO over time of such a system is only slightly less than a worker. Are you positive your metric would correctly account for such a change? This would be a revolutionary improvement that would eventually change everything but in year 1 the new sentient robots are just doing existing jobs with less labor and very high capital costs
No it wouldn’t. TFP is in a sense, a lagging indicator. It captures economic benefits of technological progress but does not evaluate emerging technologies which have yet to make an economic imprint. That said, no AI I’m aware of that presently exists is remotely comparable to a human level AI. Level 5 self driving doesn’t even exist yet and once the computational power used to power AI catches up with Moore’s Law, the field seems due for a slowdown.