Yes, this is a plausible scenario. I personally put weight on this type of scenario, namely, that progress might stall and then resume once some complementary supply-side and demand-side innovations have been made and other economic progress has happened to support more investment in the area. I don’t think this would be runaway technological progress. I might talk more about this sort of scenario in a future post.
I don’t think this would be runaway technological progress
No reason to think it won’t be runaway technological progress, depending on how you define runaway. The industrial revolution was runaway technological progress. Going from an economic output doubling time of 1000 years to 15 years is certainly runway. The rate of growth ultimately stalled but it was certainly runaway for that transitional period, even though there were stalls along the way.
Edited to add link. If you haven’t already seen a version of this talk by Robin Hanson, the first 20 minutes or so goes into this but it’s interesting throughout if you have time.
http://www.youtube.com/watch?v=uZ4Qx42WQHo
So we’re talking about a human based runaway scenario? That’s not gonna happen.
Um. Runaway progress does not stall by defintion—think about what “runaway” means.
OK, that’s what ‘runaway’ growth means. Can this even be predicted. I think not. How could you possibly ever know that you’re in a runaway? The transition from agriculture to industry saw an increase in economic growth roughly 65 times faster. I think if we saw global output accelerate by even half that in the next 20 years most would be calling a runaway scenario.
We are talking about a runaway scenario in a human civilization, aren’t we?
I don’t think that’s possible. Do you? A runaway means a massive and ongoing boost in productivity. That seems achievable only by AI, full brain emulations, or transhumans that are much smarter and faster at doing stuff than humans can be.
So what does it mean?
I was agreeing (mostly). My point was that by that definition we could never predict, or even know that we are in the middle of, a runway scenario. I did pose it as a question and you did not reply with an answer. So what do you think? If the doubling time in economic output decreased by 35 times over the next 2, or even 4 decades, would you think we are in a runaway scenario?
I did not mean to imply that situation in quote 1 would happen within the timeframe of quote 2, and I don’t think i did. It’s a thought experiment and I think that is clear.
And, by the way, understanding that you lost control is how you know you’re in a runaway scenario.
There are examples of this in real history from smart people who thought we’d lost control—see Samuel Butler. We have, arguably. The extent to which machines are now integral to continued economic prosperity is irreversible without unbearable costs (people will die).
I personally put weight on this type of scenario, namely, that progress might stall and then resume once some complementary supply-side and demand-side innovations have been made and other economic progress has happened to support more investment in the area.
Yeah, so do I.
I’m not sure it makes a lot of difference in terms of long run predictions, though. Let’s say that for the next 10 years, we cut the amount of research we are doing into computers in half in percentage terms (so instead of putting X% of our global GDP into computer research every year, we put X/2%.) Let’s say we take that and instead invest it in other forms of growth (other technologies, biotech, transhuman technologies, science, infrastructure, or even bringing the third world out of poverty and into education, ect) and maintain the current rate of global growth. Let’s further say that the combination of global GDP growth and science and technology growth is roughly 7% a year, so that the global economy is doubled every 10 years in how much it can devote to research. And then at the end of that period, computer research goes back up to X%.
In that case, that 10 year long research slowdown would put us getting to where we “should” have been in computer science in 2044 now happening in 2045 instead; if that’s the point we need to be at to get a singularity started, then that 10 years long research slowdown would only delay the singularity by about 1.75 years. (edit: math error corrected)
And not only that, after a 10 year slowdown into computer science research, I would expect computers to become the new “low hanging fruit”, and we might end up devoting even more resources to it at that point, perhaps eliminating the time loss all together.
Basically, so long as exponential growth continues at all, in technological and economic terms in general, I don’t think the kind of slowdown we’re talking about would have a huge long-term effect on the general trajectory of progress.
As a general observation, you don’t want to model growth (of any sort) as X% per year. You want to model it as a random variable with the mean of X% per year, maybe, and you want to spend some time thinking about its distribution. In particular, whether that distribution is symmetric and how far out do the tails go.
Yes, this is a plausible scenario. I personally put weight on this type of scenario, namely, that progress might stall and then resume once some complementary supply-side and demand-side innovations have been made and other economic progress has happened to support more investment in the area. I don’t think this would be runaway technological progress. I might talk more about this sort of scenario in a future post.
No reason to think it won’t be runaway technological progress, depending on how you define runaway. The industrial revolution was runaway technological progress. Going from an economic output doubling time of 1000 years to 15 years is certainly runway. The rate of growth ultimately stalled but it was certainly runaway for that transitional period, even though there were stalls along the way.
Edited to add link.
If you haven’t already seen a version of this talk by Robin Hanson, the first 20 minutes or so goes into this but it’s interesting throughout if you have time. http://www.youtube.com/watch?v=uZ4Qx42WQHo
No reason? How about humans?
Um. Runaway progress does not stall by defintion—think about what “runaway” means.
So we’re talking about a human based runaway scenario? That’s not gonna happen.
OK, that’s what ‘runaway’ growth means. Can this even be predicted. I think not. How could you possibly ever know that you’re in a runaway? The transition from agriculture to industry saw an increase in economic growth roughly 65 times faster. I think if we saw global output accelerate by even half that in the next 20 years most would be calling a runaway scenario.
We are talking about a runaway scenario in a human civilization, aren’t we?
So what does it mean?
I don’t think that’s possible. Do you? A runaway means a massive and ongoing boost in productivity. That seems achievable only by AI, full brain emulations, or transhumans that are much smarter and faster at doing stuff than humans can be.
I was agreeing (mostly). My point was that by that definition we could never predict, or even know that we are in the middle of, a runway scenario. I did pose it as a question and you did not reply with an answer. So what do you think? If the doubling time in economic output decreased by 35 times over the next 2, or even 4 decades, would you think we are in a runaway scenario?
-
Situation in quote 1 will not happen within the time frame in quote 2.
Generally speaking, I understand “runaway” as “unstoppable”, meaning both that it won’t stop on its own (stall) and that we lost control over it.
And, by the way, understanding that you lost control is how you know you’re in a runaway scenario.
I did not mean to imply that situation in quote 1 would happen within the timeframe of quote 2, and I don’t think i did. It’s a thought experiment and I think that is clear.
There are examples of this in real history from smart people who thought we’d lost control—see Samuel Butler. We have, arguably. The extent to which machines are now integral to continued economic prosperity is irreversible without unbearable costs (people will die).
I am confused. What is a thought experiment?
My impression is that you are now evading questions and being deliberately provocative; but I’ll play...
If the rate economic growth were to increase by x35, would you think you were in a runaway scenario?
http://en.wikipedia.org/wiki/Thought_experiment
When I’m being deliberately provocative, it’s… more noticeable :-D I also know what a thought experiment is.
What I was confused about is exactly which part of the whole discussion about exponential growth did you consider to be a thought experiment.
If that were the only piece of information that I had, no, I would not think so. Insufficient data.
Yeah, so do I.
I’m not sure it makes a lot of difference in terms of long run predictions, though. Let’s say that for the next 10 years, we cut the amount of research we are doing into computers in half in percentage terms (so instead of putting X% of our global GDP into computer research every year, we put X/2%.) Let’s say we take that and instead invest it in other forms of growth (other technologies, biotech, transhuman technologies, science, infrastructure, or even bringing the third world out of poverty and into education, ect) and maintain the current rate of global growth. Let’s further say that the combination of global GDP growth and science and technology growth is roughly 7% a year, so that the global economy is doubled every 10 years in how much it can devote to research. And then at the end of that period, computer research goes back up to X%.
In that case, that 10 year long research slowdown would put us getting to where we “should” have been in computer science in 2044 now happening in 2045 instead; if that’s the point we need to be at to get a singularity started, then that 10 years long research slowdown would only delay the singularity by about 1.75 years. (edit: math error corrected)
And not only that, after a 10 year slowdown into computer science research, I would expect computers to become the new “low hanging fruit”, and we might end up devoting even more resources to it at that point, perhaps eliminating the time loss all together.
Basically, so long as exponential growth continues at all, in technological and economic terms in general, I don’t think the kind of slowdown we’re talking about would have a huge long-term effect on the general trajectory of progress.
As a general observation, you don’t want to model growth (of any sort) as X% per year. You want to model it as a random variable with the mean of X% per year, maybe, and you want to spend some time thinking about its distribution. In particular, whether that distribution is symmetric and how far out do the tails go.