I haven’t seen a strong argument that “stag hunt” is a good model for reality. If you need seven people to hunt stag the answer isn’t to have seven totally committed people, who never get ill, have other things to do, or just don’t feel like it. I’d rather have ten people who who are 90% committed, and be ready to switch to rabbit the few days when only six show up.
I agree with the thrust of Johns’ response, IE, the stag hunt is a stand-in for a more general class of coordination problems, pointing at the property there are multiple equilibria, and some are Pareto improvements over others. The stag hunt is kind of the minimal example of this, in that it only has 2 equilibria. I generally agree that using Stag Hunt unfortunately may connote other properties, such as this only-2-equilibria property.
However, it seems to me that you think real coordination problems almost never have this all-or-nothing flavor. I disagree. Yes, it’s rarely going to be literally two equilibria. However, there aren’t always going to be solutions of the sort you mention.
For example, if your family is having a day out and deciding where to eat, and Uncle Mortimer categorically refuses to go to the Italian place everyone else wants to go to, often the family would prefer to follow Mortimer to some other place, rather than letting him eat on his own. Everyone but Mortimer eating at the Italian place is seen as a “failed family day”—each person individually could go to the Italian place on any day (this is like hunting rabbit), but they wanted to do something special today: a family meal.
Many cases where people take a vote are like this; particularly in cases where you vote yes/no to pass a resolution / go forward with a plan (rather than vote between a number of alternatives). An organization might be able to handle one or two solid refusals to go along with the vote outcome, but a sizable minority would be a serious problem. The reason people are willing to go along with the outcome of a vote they don’t agree with is because the organization remaining coherent is like stag, and everyone doing their own thing is like rabbit.
On paper, I basically agree with this. In practice, people (at least in this community) mostly seem to use stag hunt as a toy-model stand-in for games with increasing returns on number of players “hunting stag”, which is quite a bit more general than the pure stag hunt reward function. For that purpose, it is a useful model; the key qualitative insights do generalize.
I haven’t seen a strong argument that “stag hunt” is a good model for reality. If you need seven people to hunt stag the answer isn’t to have seven totally committed people, who never get ill, have other things to do, or just don’t feel like it. I’d rather have ten people who who are 90% committed, and be ready to switch to rabbit the few days when only six show up.
I agree with the thrust of Johns’ response, IE, the stag hunt is a stand-in for a more general class of coordination problems, pointing at the property there are multiple equilibria, and some are Pareto improvements over others. The stag hunt is kind of the minimal example of this, in that it only has 2 equilibria. I generally agree that using Stag Hunt unfortunately may connote other properties, such as this only-2-equilibria property.
However, it seems to me that you think real coordination problems almost never have this all-or-nothing flavor. I disagree. Yes, it’s rarely going to be literally two equilibria. However, there aren’t always going to be solutions of the sort you mention.
For example, if your family is having a day out and deciding where to eat, and Uncle Mortimer categorically refuses to go to the Italian place everyone else wants to go to, often the family would prefer to follow Mortimer to some other place, rather than letting him eat on his own. Everyone but Mortimer eating at the Italian place is seen as a “failed family day”—each person individually could go to the Italian place on any day (this is like hunting rabbit), but they wanted to do something special today: a family meal.
Many cases where people take a vote are like this; particularly in cases where you vote yes/no to pass a resolution / go forward with a plan (rather than vote between a number of alternatives). An organization might be able to handle one or two solid refusals to go along with the vote outcome, but a sizable minority would be a serious problem. The reason people are willing to go along with the outcome of a vote they don’t agree with is because the organization remaining coherent is like stag, and everyone doing their own thing is like rabbit.
On paper, I basically agree with this. In practice, people (at least in this community) mostly seem to use stag hunt as a toy-model stand-in for games with increasing returns on number of players “hunting stag”, which is quite a bit more general than the pure stag hunt reward function. For that purpose, it is a useful model; the key qualitative insights do generalize.
Ok sure, at that point it’s basically a synonym for network effects.