I agree this may be true in most cases, but the chance of it not being true for AI is large enough to motivate the distinction. Besides, not all cases in which performance and cost can be traded off are the same; in some scenarios the “price” of performance is very high whereas in other scenarios it is low. (e.g. in Gradual Economic Takeover, let’s say, a system being twice as qualitatively intelligent could be equivalent to being a quarter the price. Whereas in Final Conflict, a system twice as qualitatively intelligent would be equivalent to being one percent the price.) So if we are thinking of a system as “competitive with X% overhead,” well, X% is going to vary tremendously depending on which scenario is realized. Seems worth saying e.g. “costs Y% more compute, but is Z% more capable.”
I agree this may be true in most cases, but the chance of it not being true for AI is large enough to motivate the distinction. Besides, not all cases in which performance and cost can be traded off are the same; in some scenarios the “price” of performance is very high whereas in other scenarios it is low. (e.g. in Gradual Economic Takeover, let’s say, a system being twice as qualitatively intelligent could be equivalent to being a quarter the price. Whereas in Final Conflict, a system twice as qualitatively intelligent would be equivalent to being one percent the price.) So if we are thinking of a system as “competitive with X% overhead,” well, X% is going to vary tremendously depending on which scenario is realized. Seems worth saying e.g. “costs Y% more compute, but is Z% more capable.”