1950s era computers likely couldn’t handle the complex AI tasks imagined here (doing image recognition; navigating rough Baffin Island terrain, finishing parts with hand tools, etc) without taking up much more than 1 meter cubed.
idk, you still have to fit video cameras and complex robotic arms and wifi equipment into that 1m^3 box, even if you are doing all the AI inference somewhere else! I have a much longer comment replying to the top-level post, where I try to analyze the concept of an autofac and what an optimized autofac design would really look like. Imagining a 100% self-contained design is a pretty cool intellectual exercise, but it’s hard to imagine a situation where it doesn’t make sense to import the most complex components from somewhere else (at least initially, until you can make computers that don’t take up 90% of your manufacturing output).
Feynman is imagining lots of components being made with “hand tools”, in order to cut down on the amount of specialized machinery we need. So you’d want sophisticated manipulators to use the tools, move the components, clean up bits of waste, etc. Plus of course for gathering raw resources and navigating Canadian tundra. And you’d need video cameras for the system to look at what it’s doing (otherwise you’d only have feed-forward controls in many situations, which would probably cause lots of cascading errors).
I don’t know how big a rasberry pi would be if it had to be hand-assembled from transistors big enough to pick up individually. So maybe it’s doable!
I was actually thinking of a pair of humanlike arms with many degrees of freedom, and one or more cameras looking at things. You can have dozens of single datum sensors, or one camera. It’s much cheaper. Similarly, once you have some robot arms, there’s no gain in including many single use motors. For example, when I include an arbor press, I don’t mean a motorized press. I mean a big lever that you grab with the robot arm and pull down, to press in a shaft or shape a screw head.
There are two CNC machine tools, to automate some part shaping while the robot does something else.
1950s era computers likely couldn’t handle the complex AI tasks imagined here (doing image recognition; navigating rough Baffin Island terrain, finishing parts with hand tools, etc) without taking up much more than 1 meter cubed.
.
idk, you still have to fit video cameras and complex robotic arms and wifi equipment into that 1m^3 box, even if you are doing all the AI inference somewhere else! I have a much longer comment replying to the top-level post, where I try to analyze the concept of an autofac and what an optimized autofac design would really look like. Imagining a 100% self-contained design is a pretty cool intellectual exercise, but it’s hard to imagine a situation where it doesn’t make sense to import the most complex components from somewhere else (at least initially, until you can make computers that don’t take up 90% of your manufacturing output).
.
Feynman is imagining lots of components being made with “hand tools”, in order to cut down on the amount of specialized machinery we need. So you’d want sophisticated manipulators to use the tools, move the components, clean up bits of waste, etc. Plus of course for gathering raw resources and navigating Canadian tundra. And you’d need video cameras for the system to look at what it’s doing (otherwise you’d only have feed-forward controls in many situations, which would probably cause lots of cascading errors).
I don’t know how big a rasberry pi would be if it had to be hand-assembled from transistors big enough to pick up individually. So maybe it’s doable!
.
I was actually thinking of a pair of humanlike arms with many degrees of freedom, and one or more cameras looking at things. You can have dozens of single datum sensors, or one camera. It’s much cheaper. Similarly, once you have some robot arms, there’s no gain in including many single use motors. For example, when I include an arbor press, I don’t mean a motorized press. I mean a big lever that you grab with the robot arm and pull down, to press in a shaft or shape a screw head.
There are two CNC machine tools, to automate some part shaping while the robot does something else.