I am pretty sure that most trains in the USA are diesel-electric not just diesel. So the real question is would converting those trains to pure electric actually reduce the total carbon footprint of rail? I suspect not given some have argued that EV car have a higher carbon footprint that cars they replace, and those cars use gas, run at variable speeds and so are much less efficient that the train diesel engine’s use of diesel fuel.
Are the very least you’d need to start calculating the conversion timeline for recouping the pollution from building out all the electric infrastructure and the additional maintenance of that infrastructure. Given the goal now is to reduce carbon output you might be adding at the margin when marginal increases are most damaging.
I think if you want to think about power innovations for trains things like hydrogen are probably a better way forward.
Heavy earth-moving equipment mist be a better target, and perhaps should be the target before cars. Cars should probably go to hybrid systems as they will be better. Side observation, a few years ago I read something that claimed the these days the bigger source of pollution (probably in suburban, and metro but not pure urban) was lawn mowers. Getting rid of the gas mowers and converting to electric might be both an easy target and good bang for the buck.
Wait, diesel-electric just means that they use an electric transmission, right? So 100% of the energy driving the locomotive still ultimately comes from burning diesel. IIRC the carbon footprint of electric cars is dependent on how your local power is generated. To be worse than internal combustion, there needs to be a high fraction of coal in the mix. Even the power plants that burn stuff are generally more efficient than internal combustion engines because they’re larger so less heat is lost to conduction and they also burn hotter. So the actual reason for higher emissions would just be that coal has more carbon in it per joule than gasoline does. That’s all just going off of memory, please correct me if I’m wrong.
It actually seems like a diesel-electric fleet would be almost ideal for converting rail lines to electric. If upgrading a locomotive to have brushes and some associated power electronics is not too expensive, then you can get a hybrid that will still operate as a normal diesel locomotive on lines that haven’t been electrified yet, but will operate electrically on lines that have been, saving on fuel costs.
Not my understanding. The diesel just drives the “generator” that then powers electric motors that drive the wheels. These trains are supposed to be able to move a ton about 450-500 miles on a gallon of fuel. I do agree that conversion would be fairly straightforward but you’ll have a lot of polluting activities, and destruction of carbon consuming flora. So just how much of a gain are we getting for the conversion compared to the increased pollution during the infrastructure build out. There is also the ongoing maintenance on the routes to keep the trains powered. Seems to me that unless one makes the unrealistic assumption that all that activity is non-polluting it has to be considered in the argument.
With regard to the cars, EV and hybrid I was extrapolating on the fuel consumption for the trains. I using a small ICE to drive a generator for an electric vehicle would reduce the initial carbon output in making everything for the EV. That all comes down to battery life and that seems to come down to miles driven. Generally EVs get driven fewer miles than ICE cars but as more people drive the EVs that might change. Tesla gives an 8 year warranty on the batteries. Looking around a bit seems that existing hybrids are just crappy design so from that perspective was a poor suggestion. But a car modeled off the diesel-electric train that is even a quarter as efficient (just 100 mpg) then the carbon curve shifts way down on the those gas-electric cars and the cross over point for EVs shifts much farther out—perhaps to the point of battery replacement. Perhaps there as some scale factors, I’m not a power engineer, so maybe that 100 mpg is never possible.
I’ll try one more time and shutup as it sees to me people are focusing on semantics rather that the actual question.
If electro-diesel trains are transporting a ton about 450 mile on a gallon of diesel then just how much will it cost, in terms of carbon output to electrify a mile of rail in comparison to the average train loading?
How much will it cost in terms of carbon output to maintain that electrification per year annually?
How many years will it take to reach a carbon neutral position?
What are the expected costs of, assuming you agree there will be increased carbon output, the marginal increase in carbon output during the transition period compared to the current impact of electro-diesel transportation?
If you don’t agree that the infrastructure build out will increase carbon output how is that accomplished?
At a ROI of 19% you get economic payback in 5.3 years. The benefits are more weighted towards fossil fuel use than the costs so CO2 neutrality would be sooner than that, but then you start getting into issues like how you account for energy usage of workers whose labor is being used when you substitute labor for energy use.
Diesel-electric operate on electric where available, and switch to diesel when they get to unelectrified areas. Many cities are electrified within maybe a 20 mile radius of city center, with farther branches being diesel.
I suspect not given some have argued that EV car have a higher carbon footprint that cars they replace
You should go back and re-examine those arguments. They haven’t been true for decades, if ever, and are usually not produced in good faith. It’s not even close, unless you exclusively charged your EV from the very least carbon efficient power plants in the world.
Cars should probably go to hybrid systems as they will be better.
If you mean serial hybrids/PHEVs, then I agree, this is something I expected to see a lot more of by now, but instead companies seem to want to jump straight to pure BEVs, which I think is likely to be a worse transition overall.
these days the bigger source of pollution (probably in suburban, and metro but not pure urban) was lawn mowers.
You may want to be more specific what you mean by “pollution” and “bigger.” Particulates and various fumes other than CO2 per gallon of fuel burned? Sure, makes sense. Anything about aggregate amounts? No. That may be true in some specific geographies, but is broadly false. I do agree that going electric is often a good idea, as long as your lot isn’t too big and you keep up with it. I had a battery electric mower and loved it, except that if I missed a week or two I would drain the batteries several times faster b/c of the taller grass. Ditto if the grass was at all damp. But it’s getting there.
I am pretty sure that most trains in the USA are diesel-electric not just diesel. So the real question is would converting those trains to pure electric actually reduce the total carbon footprint of rail?
For ideal operation, a train can access electricity from the grid at all times. Currently, that’s not possible on large parts of the US grid.
Electric cars need batteries and as a result you have different dynamics.
I think if you want to think about power innovations for trains things like hydrogen are probably a better way forward.
Why? It’s easier to transport electricity than it’s to transport hydrogen. Electricity-driven motors are also more efficient than hydrogen-fuel cells.
I would expect some efficiency gains from not having to carry a diesel generator with you, and some efficiency gains from not needing to design it to fit on a train (my understanding is that bigger generators tend to be more efficient).
There are also efficiency gains from being able to run the generators continuously, which justifies spending more on them. Combined-cycle gas turbines are more efficient than big diesel engines, and their fuel is cheaper.
I am pretty sure that most trains in the USA are diesel-electric not just diesel. So the real question is would converting those trains to pure electric actually reduce the total carbon footprint of rail? I suspect not given some have argued that EV car have a higher carbon footprint that cars they replace, and those cars use gas, run at variable speeds and so are much less efficient that the train diesel engine’s use of diesel fuel.
Are the very least you’d need to start calculating the conversion timeline for recouping the pollution from building out all the electric infrastructure and the additional maintenance of that infrastructure. Given the goal now is to reduce carbon output you might be adding at the margin when marginal increases are most damaging.
I think if you want to think about power innovations for trains things like hydrogen are probably a better way forward.
Heavy earth-moving equipment mist be a better target, and perhaps should be the target before cars. Cars should probably go to hybrid systems as they will be better. Side observation, a few years ago I read something that claimed the these days the bigger source of pollution (probably in suburban, and metro but not pure urban) was lawn mowers. Getting rid of the gas mowers and converting to electric might be both an easy target and good bang for the buck.
Wait, diesel-electric just means that they use an electric transmission, right? So 100% of the energy driving the locomotive still ultimately comes from burning diesel. IIRC the carbon footprint of electric cars is dependent on how your local power is generated. To be worse than internal combustion, there needs to be a high fraction of coal in the mix. Even the power plants that burn stuff are generally more efficient than internal combustion engines because they’re larger so less heat is lost to conduction and they also burn hotter. So the actual reason for higher emissions would just be that coal has more carbon in it per joule than gasoline does. That’s all just going off of memory, please correct me if I’m wrong.
It actually seems like a diesel-electric fleet would be almost ideal for converting rail lines to electric. If upgrading a locomotive to have brushes and some associated power electronics is not too expensive, then you can get a hybrid that will still operate as a normal diesel locomotive on lines that haven’t been electrified yet, but will operate electrically on lines that have been, saving on fuel costs.
Not my understanding. The diesel just drives the “generator” that then powers electric motors that drive the wheels. These trains are supposed to be able to move a ton about 450-500 miles on a gallon of fuel. I do agree that conversion would be fairly straightforward but you’ll have a lot of polluting activities, and destruction of carbon consuming flora. So just how much of a gain are we getting for the conversion compared to the increased pollution during the infrastructure build out. There is also the ongoing maintenance on the routes to keep the trains powered. Seems to me that unless one makes the unrealistic assumption that all that activity is non-polluting it has to be considered in the argument.
With regard to the cars, EV and hybrid I was extrapolating on the fuel consumption for the trains. I using a small ICE to drive a generator for an electric vehicle would reduce the initial carbon output in making everything for the EV. That all comes down to battery life and that seems to come down to miles driven. Generally EVs get driven fewer miles than ICE cars but as more people drive the EVs that might change. Tesla gives an 8 year warranty on the batteries. Looking around a bit seems that existing hybrids are just crappy design so from that perspective was a poor suggestion. But a car modeled off the diesel-electric train that is even a quarter as efficient (just 100 mpg) then the carbon curve shifts way down on the those gas-electric cars and the cross over point for EVs shifts much farther out—perhaps to the point of battery replacement. Perhaps there as some scale factors, I’m not a power engineer, so maybe that 100 mpg is never possible.
That’s exactly what “electric transmission” means, no?
I’ll try one more time and shutup as it sees to me people are focusing on semantics rather that the actual question.
If electro-diesel trains are transporting a ton about 450 mile on a gallon of diesel then just how much will it cost, in terms of carbon output to electrify a mile of rail in comparison to the average train loading?
How much will it cost in terms of carbon output to maintain that electrification per year annually?
How many years will it take to reach a carbon neutral position?
What are the expected costs of, assuming you agree there will be increased carbon output, the marginal increase in carbon output during the transition period compared to the current impact of electro-diesel transportation?
If you don’t agree that the infrastructure build out will increase carbon output how is that accomplished?
At a ROI of 19% you get economic payback in 5.3 years. The benefits are more weighted towards fossil fuel use than the costs so CO2 neutrality would be sooner than that, but then you start getting into issues like how you account for energy usage of workers whose labor is being used when you substitute labor for energy use.
Diesel-electric operate on electric where available, and switch to diesel when they get to unelectrified areas. Many cities are electrified within maybe a 20 mile radius of city center, with farther branches being diesel.
No. Trains that can do that are called electro-diesel locomotives. Not diesel-electric.
You should go back and re-examine those arguments. They haven’t been true for decades, if ever, and are usually not produced in good faith. It’s not even close, unless you exclusively charged your EV from the very least carbon efficient power plants in the world.
If you mean serial hybrids/PHEVs, then I agree, this is something I expected to see a lot more of by now, but instead companies seem to want to jump straight to pure BEVs, which I think is likely to be a worse transition overall.
You may want to be more specific what you mean by “pollution” and “bigger.” Particulates and various fumes other than CO2 per gallon of fuel burned? Sure, makes sense. Anything about aggregate amounts? No. That may be true in some specific geographies, but is broadly false. I do agree that going electric is often a good idea, as long as your lot isn’t too big and you keep up with it. I had a battery electric mower and loved it, except that if I missed a week or two I would drain the batteries several times faster b/c of the taller grass. Ditto if the grass was at all damp. But it’s getting there.
For ideal operation, a train can access electricity from the grid at all times. Currently, that’s not possible on large parts of the US grid.
Electric cars need batteries and as a result you have different dynamics.
Why? It’s easier to transport electricity than it’s to transport hydrogen. Electricity-driven motors are also more efficient than hydrogen-fuel cells.
Separately, the OP wrote a post on how hydrogen is likely not going to be as cheap in 2030 as officially projected: https://www.bhauth.com/blog/chemistry/electricity%20to%20chemicals.html
I would expect some efficiency gains from not having to carry a diesel generator with you, and some efficiency gains from not needing to design it to fit on a train (my understanding is that bigger generators tend to be more efficient).
There are also efficiency gains from being able to run the generators continuously, which justifies spending more on them. Combined-cycle gas turbines are more efficient than big diesel engines, and their fuel is cheaper.