Not my understanding. The diesel just drives the “generator” that then powers electric motors that drive the wheels. These trains are supposed to be able to move a ton about 450-500 miles on a gallon of fuel. I do agree that conversion would be fairly straightforward but you’ll have a lot of polluting activities, and destruction of carbon consuming flora. So just how much of a gain are we getting for the conversion compared to the increased pollution during the infrastructure build out. There is also the ongoing maintenance on the routes to keep the trains powered. Seems to me that unless one makes the unrealistic assumption that all that activity is non-polluting it has to be considered in the argument.
With regard to the cars, EV and hybrid I was extrapolating on the fuel consumption for the trains. I using a small ICE to drive a generator for an electric vehicle would reduce the initial carbon output in making everything for the EV. That all comes down to battery life and that seems to come down to miles driven. Generally EVs get driven fewer miles than ICE cars but as more people drive the EVs that might change. Tesla gives an 8 year warranty on the batteries. Looking around a bit seems that existing hybrids are just crappy design so from that perspective was a poor suggestion. But a car modeled off the diesel-electric train that is even a quarter as efficient (just 100 mpg) then the carbon curve shifts way down on the those gas-electric cars and the cross over point for EVs shifts much farther out—perhaps to the point of battery replacement. Perhaps there as some scale factors, I’m not a power engineer, so maybe that 100 mpg is never possible.
I’ll try one more time and shutup as it sees to me people are focusing on semantics rather that the actual question.
If electro-diesel trains are transporting a ton about 450 mile on a gallon of diesel then just how much will it cost, in terms of carbon output to electrify a mile of rail in comparison to the average train loading?
How much will it cost in terms of carbon output to maintain that electrification per year annually?
How many years will it take to reach a carbon neutral position?
What are the expected costs of, assuming you agree there will be increased carbon output, the marginal increase in carbon output during the transition period compared to the current impact of electro-diesel transportation?
If you don’t agree that the infrastructure build out will increase carbon output how is that accomplished?
At a ROI of 19% you get economic payback in 5.3 years. The benefits are more weighted towards fossil fuel use than the costs so CO2 neutrality would be sooner than that, but then you start getting into issues like how you account for energy usage of workers whose labor is being used when you substitute labor for energy use.
Not my understanding. The diesel just drives the “generator” that then powers electric motors that drive the wheels. These trains are supposed to be able to move a ton about 450-500 miles on a gallon of fuel. I do agree that conversion would be fairly straightforward but you’ll have a lot of polluting activities, and destruction of carbon consuming flora. So just how much of a gain are we getting for the conversion compared to the increased pollution during the infrastructure build out. There is also the ongoing maintenance on the routes to keep the trains powered. Seems to me that unless one makes the unrealistic assumption that all that activity is non-polluting it has to be considered in the argument.
With regard to the cars, EV and hybrid I was extrapolating on the fuel consumption for the trains. I using a small ICE to drive a generator for an electric vehicle would reduce the initial carbon output in making everything for the EV. That all comes down to battery life and that seems to come down to miles driven. Generally EVs get driven fewer miles than ICE cars but as more people drive the EVs that might change. Tesla gives an 8 year warranty on the batteries. Looking around a bit seems that existing hybrids are just crappy design so from that perspective was a poor suggestion. But a car modeled off the diesel-electric train that is even a quarter as efficient (just 100 mpg) then the carbon curve shifts way down on the those gas-electric cars and the cross over point for EVs shifts much farther out—perhaps to the point of battery replacement. Perhaps there as some scale factors, I’m not a power engineer, so maybe that 100 mpg is never possible.
That’s exactly what “electric transmission” means, no?
I’ll try one more time and shutup as it sees to me people are focusing on semantics rather that the actual question.
If electro-diesel trains are transporting a ton about 450 mile on a gallon of diesel then just how much will it cost, in terms of carbon output to electrify a mile of rail in comparison to the average train loading?
How much will it cost in terms of carbon output to maintain that electrification per year annually?
How many years will it take to reach a carbon neutral position?
What are the expected costs of, assuming you agree there will be increased carbon output, the marginal increase in carbon output during the transition period compared to the current impact of electro-diesel transportation?
If you don’t agree that the infrastructure build out will increase carbon output how is that accomplished?
At a ROI of 19% you get economic payback in 5.3 years. The benefits are more weighted towards fossil fuel use than the costs so CO2 neutrality would be sooner than that, but then you start getting into issues like how you account for energy usage of workers whose labor is being used when you substitute labor for energy use.