If you know the probability distribution P(t) of you dying on day t, then you can solve exactly for optimal expected lifetime utilons out of the box. If you don’t know P(t), you can do some sort of adaptive estimation as you go.
Note that the problem is making the counterfactual assumption that
You are immortal.
P(t) = 0.
Why is this an interesting problem?
I’m not sufficiently familiar with my own internal criteria of interesting-ness to explain to you why I find it interesting. Sorry you don’t as well.
Current theme: default
Less Wrong (text)
Less Wrong (link)
Arrow keys: Next/previous image
Escape or click: Hide zoomed image
Space bar: Reset image size & position
Scroll to zoom in/out
(When zoomed in, drag to pan; double-click to close)
Keys shown in yellow (e.g., ]) are accesskeys, and require a browser-specific modifier key (or keys).
]
Keys shown in grey (e.g., ?) do not require any modifier keys.
?
Esc
h
f
a
m
v
c
r
q
t
u
o
,
.
/
s
n
e
;
Enter
[
\
k
i
l
=
-
0
′
1
2
3
4
5
6
7
8
9
→
↓
←
↑
Space
x
z
`
g
If you know the probability distribution P(t) of you dying on day t, then you can solve exactly for optimal expected lifetime utilons out of the box. If you don’t know P(t), you can do some sort of adaptive estimation as you go.
Note that the problem is making the counterfactual assumption that
P(t) = 0.
Why is this an interesting problem?
I’m not sufficiently familiar with my own internal criteria of interesting-ness to explain to you why I find it interesting. Sorry you don’t as well.