My view of the development of the field of AI alignment is pretty much the exact opposite of yours: theoretical agent foundations research, what you describe as research on the hard parts of the alignment problem, is a castle in the clouds. Only when alignment researchers started experimenting with real-world machine learning models did AI alignment become grounded in reality. The biggest epistemic failure in the history of the AI alignment community was waiting too long to make this transition.
Early arguments for the possibility of AI existential risk (as seen, for example, in the Sequences) were largely based on 1) rough analogies, especially to evolution, and 2) simplifying assumptions about the structure and properties of AGI. For example, agent foundations research sometimes assumes that AGI has infinite compute or that it has a strict boundary between its internal decision processes and the outside world.
As neural networks started to see increasing success at a wide variety of problems in the mid-2010s, it started to become apparent that the analogies and assumptions behind early AI x-risk cases didn’t apply to them. The process of developing an ML model isn’t very similar to evolution. Neural networks use finite amounts of compute, have internals that can be probed and manipulated, and behave in ways that can’t be rounded off to decision theory. On top of that, it became increasingly clear as the deep learning revolution progressed that even if agent foundations research did deliver accurate theoretical results, there was no way to put them into practice.
But many AI alignment researchers stuck with the agent foundations approach for a long time after their predictions about the structure and behavior of AI failed to come true. Indeed, the late-2000s AI x-risk arguments still get repeated sometimes, like in List of Lethalities. It’s telling that the OP uses worst-case ELK as an example of one of the hard parts of the alignment problem; the framing of the worst-case ELK problem doesn’t make any attempt to ground the problem in the properties of any AI system that could plausibly exist in the real world, and instead explicitly rejects any such grounding as not being truly worst-case.
Why have ungrounded agent foundations assumptions stuck around for so long? There are a couple factors that are likely at work:
Agent foundations nerd-snipes people. Theoretical agent foundations is fun to speculate about, especially for newcomers or casual followers of the field, in a way that experimental AI alignment isn’t. There’s much more drudgery involved in running an experiment. This is why I, personally, took longer than I should have to abandon the agent foundations approach.
Game-theoretic arguments are what motivated many researchers to take the AI alignment problem seriously in the first place. The sunk cost fallacy then comes into play: if you stop believing that game-theoretic arguments for AI x-risk are accurate, you might conclude that all the time you spent researching AI alignment was wasted.
Rather than being an instance of the streetlight effect, the shift to experimental research on AI alignment was an appropriate response to developments in the field of AI as it left the GOFAI era. AI alignment research is now much more grounded in the real world than it was in the early 2010s.
You do realize that by “alignment”, the OP (John) is not taking about techniques that prevent an AI that is less generally capable than a capable person from insulting the user or expressing racist sentiments?
We seek a methodology for constructing an AI that either ensures that the AI turns out not to be able to easily outsmart us or (if it does turn out to be able to easily outsmart us) ensures (or makes it unlikely) that it won’t kill us all or do something other terrible thing. (The former is not researched much compared to the latter, but I felt the need to include it for completeness.)
The way it is now, it is not even clear whether you and the OP (John) are talking about the same thing (because “alignment” has come to have a broad meaning).
If you want to continue the conversation, it would help to know whether you see a pressing need for a methodology of the type I describe above. (Many AI researchers do not: they think that outcomes like human extinction are quite unlikely or at least easy to avoid.)
My view of the development of the field of AI alignment is pretty much the exact opposite of yours: theoretical agent foundations research, what you describe as research on the hard parts of the alignment problem, is a castle in the clouds. Only when alignment researchers started experimenting with real-world machine learning models did AI alignment become grounded in reality. The biggest epistemic failure in the history of the AI alignment community was waiting too long to make this transition.
Early arguments for the possibility of AI existential risk (as seen, for example, in the Sequences) were largely based on 1) rough analogies, especially to evolution, and 2) simplifying assumptions about the structure and properties of AGI. For example, agent foundations research sometimes assumes that AGI has infinite compute or that it has a strict boundary between its internal decision processes and the outside world.
As neural networks started to see increasing success at a wide variety of problems in the mid-2010s, it started to become apparent that the analogies and assumptions behind early AI x-risk cases didn’t apply to them. The process of developing an ML model isn’t very similar to evolution. Neural networks use finite amounts of compute, have internals that can be probed and manipulated, and behave in ways that can’t be rounded off to decision theory. On top of that, it became increasingly clear as the deep learning revolution progressed that even if agent foundations research did deliver accurate theoretical results, there was no way to put them into practice.
But many AI alignment researchers stuck with the agent foundations approach for a long time after their predictions about the structure and behavior of AI failed to come true. Indeed, the late-2000s AI x-risk arguments still get repeated sometimes, like in List of Lethalities. It’s telling that the OP uses worst-case ELK as an example of one of the hard parts of the alignment problem; the framing of the worst-case ELK problem doesn’t make any attempt to ground the problem in the properties of any AI system that could plausibly exist in the real world, and instead explicitly rejects any such grounding as not being truly worst-case.
Why have ungrounded agent foundations assumptions stuck around for so long? There are a couple factors that are likely at work:
Agent foundations nerd-snipes people. Theoretical agent foundations is fun to speculate about, especially for newcomers or casual followers of the field, in a way that experimental AI alignment isn’t. There’s much more drudgery involved in running an experiment. This is why I, personally, took longer than I should have to abandon the agent foundations approach.
Game-theoretic arguments are what motivated many researchers to take the AI alignment problem seriously in the first place. The sunk cost fallacy then comes into play: if you stop believing that game-theoretic arguments for AI x-risk are accurate, you might conclude that all the time you spent researching AI alignment was wasted.
Rather than being an instance of the streetlight effect, the shift to experimental research on AI alignment was an appropriate response to developments in the field of AI as it left the GOFAI era. AI alignment research is now much more grounded in the real world than it was in the early 2010s.
You do realize that by “alignment”, the OP (John) is not taking about techniques that prevent an AI that is less generally capable than a capable person from insulting the user or expressing racist sentiments?
We seek a methodology for constructing an AI that either ensures that the AI turns out not to be able to easily outsmart us or (if it does turn out to be able to easily outsmart us) ensures (or makes it unlikely) that it won’t kill us all or do something other terrible thing. (The former is not researched much compared to the latter, but I felt the need to include it for completeness.)
The way it is now, it is not even clear whether you and the OP (John) are talking about the same thing (because “alignment” has come to have a broad meaning).
If you want to continue the conversation, it would help to know whether you see a pressing need for a methodology of the type I describe above. (Many AI researchers do not: they think that outcomes like human extinction are quite unlikely or at least easy to avoid.)