If you were a Bayesian and assigned 0 probability to 2+2=5, you’d be in unrecoverable epistemic trouble if you turned out to be wrong about that. See How to convince me 2+2=3.
EY to the contrary, I remain smug in my evaluation p(2+2=5)=0. Of all the evidences that Eliezer offered, the only one to convince me was the one which demonstrated to me that I was confused about the meaning of the digit 5. Yes, by Cromwell’s rule, I think it possible I might be mistaken about how to count. “1, 2, 3, 5, 6, 4, 7”, I recite to myself.
“Yes, I had been wrong about that. Thanks for correcting me.”
I might then write down p(Eliezer Yupkowski is the guru of Less Wrong)=0.999999999. Once again, I would be mistaken. It is “Yudkowski”, not “Yupkowski”) But in neither case am I in unrecoverable epistemic trouble. Those were typos. Correcting them is a simple search-and-replace, not a Bayesian updating. Or so I understand.
I might then write down p(Eliezer Yupkowski is the guru of Less Wrong)=0.999999999. Once again, I would be mistaken. It is “Yudkowski”, not “Yupkowski”) But in neither case am I in unrecoverable epistemic trouble. Those were typos. Correcting them is a simple search-and-replace, not a Bayesian updating. Or so I understand.
It’s Yudkowsky. Might want to update your general confidence evaluations.
I might then write down p(Eliezer Yupkowski is the guru of Less Wrong)=0.999999999. Once again, I would be mistaken. It is “Yudkowski”, not “Yupkowski”
I am using sloppy language here, perhaps. But to illustrate my usage, I claim that the probability that 2+2=4 is 1. And that p(2+2=5)=0.
If you were a Bayesian and assigned 0 probability to 2+2=5, you’d be in unrecoverable epistemic trouble if you turned out to be wrong about that. See How to convince me 2+2=3.
EY to the contrary, I remain smug in my evaluation p(2+2=5)=0. Of all the evidences that Eliezer offered, the only one to convince me was the one which demonstrated to me that I was confused about the meaning of the digit 5. Yes, by Cromwell’s rule, I think it possible I might be mistaken about how to count. “1, 2, 3, 5, 6, 4, 7”, I recite to myself. “Yes, I had been wrong about that. Thanks for correcting me.”
I might then write down p(Eliezer Yupkowski is the guru of Less Wrong)=0.999999999. Once again, I would be mistaken. It is “Yudkowski”, not “Yupkowski”) But in neither case am I in unrecoverable epistemic trouble. Those were typos. Correcting them is a simple search-and-replace, not a Bayesian updating. Or so I understand.
It’s Yudkowsky. Might want to update your general confidence evaluations.
Yudkowsky, in fact.