I’m not at all sure the overall system will be trained. Interesting that you seem to expect that with some confidence.
I’d expect the checks for cognitive biases to only call for extra cognition when a correct answer is particularly important to completing the task at hand. As such, it shouldn’t decrease performance much.
But I’m really not sure that training the overall system end-to-end is going to play a role. The success and relatively faithful CoT from r1 and QwQ give me hope that end-to-end training won’t be very useful.
Certainly people will try end-to-end training, but given the high compute cost for long-horizon tasks, I don’t think that’s going to play as large a role as piecewise and therefore fairly goal-agnostic training.
I think humans’ long-horizon performance isn’t mostly based on RL training, but our ability to reason and to learn important principles (some from direct success/failure at LTH tasks, some from vicarious experience or advice). So I expect the type of CoT RL training used in o1 to be used, as well as extensions to general reasoning where there’s not a perfectly check-able correct answer. That allows good System 2 reasoning performance, which I think is the biggerst basis of humans’ ability to perform useful LTH tasks.
Combining that with some form of continuous learning (either better episodic memory than vector databases and/or fine-tuning for facts/skills judged as useful) seems like all we need to get to human level.
Probably there will be some end-to-end performance RL, but that will still be mixed with strong contributions from reasoning about how to achieve a user-defined goal.
Gauging how much goal-directed RL is too much isn’t an ideal situation to be in, but it seems like if there’s not too much, instruction-following alignment will work.
WRT to cognitive biases, end-to-end training would increase some desired biases while decreasing some that are hurting performance (sometimes correct answers are very useful).
MR as humans experience it is only optimial within our very sharp cognitive limitations, and the types of tasks we tend to take on. So optimal MR for agents will be fairly different.
I’m curious about your curiousity; is it just that, or are you seeing a strong connection between biases in LMAs and their alignment?
But I’m really not sure that training the overall system end-to-end is going to play a role. The success and relatively faithful CoT from r1 and QwQ give me hope that end-to-end training won’t be very useful.
Huh, isn’t this exactly backwards? Presumably r1 and QwQ got that way due to lots of end-to-end training. They aren’t LMPs/bureaucracies.
...reading onward I don’t think we disagree much about what the architecture will look like though. It sounds like you agree that probably there’ll be some amount of end-to-end training and the question is how much?
My curiosity stems from: 1. Generic curiosity about how minds work. It’s an important and interesting topic and MR is a bias that we’ve observed empirically but don’t have a mechanistic story for why the structure of the mind causes that bias—at least, I don’t have such a story but it seems like you do! 2. Hope that we could build significantly more rational AI agents in the near future, prior to the singularity, which could then e.g. participate in massive liquid virtual prediction markets and improve human collective epistemics greatly.
Ah- now now I see how we’re using end-to-end training a little differently.
I’m thinking of end-to-end training as training a CoT, as in o1 etc, AND training an outer-loop control scheme for organizing complex plans and tasks. That outer-loop training is what I’m not sure will be helpful. You can script roughly how humans solve complex tasks, I think in a way that will help and not get in the way of the considerable power of the trained CoT. So I still expect this to play a role; I just don’t know how big a role it will play.
I agree that training CoT will be done, and has important implications for alignment, particularly in making CoTs opaque or unfaithful.
Reason 1: makes sense. One reason I never got around to publishing my work in comprehensible form is that it’s just adding mechanistic detail to an earlier essentially-correct theory that it’s just the result of applying self-interest (or equivalently, RL) to decisions about beliefs, in the context of our cognitive limitations. I’ll try to dig up the reference when I get a little time.
Reason 2: Interesting. I do hope we can align early agents well enough to get nontrivial help from them in solving the remaining alignment problems, both for AGI agents and for the power structures that are deploying and controlling them. Biases in their thinking have been less of a concern for me than their capabilities, but they will play a role. Sycophancy in particular seems like the language model equivalent of human motivated reasoning, and it could really wreck agents’ usefulness in making their user’s/controllers actions more sane.
I’m not at all sure the overall system will be trained. Interesting that you seem to expect that with some confidence.
I’d expect the checks for cognitive biases to only call for extra cognition when a correct answer is particularly important to completing the task at hand. As such, it shouldn’t decrease performance much.
But I’m really not sure that training the overall system end-to-end is going to play a role. The success and relatively faithful CoT from r1 and QwQ give me hope that end-to-end training won’t be very useful.
Certainly people will try end-to-end training, but given the high compute cost for long-horizon tasks, I don’t think that’s going to play as large a role as piecewise and therefore fairly goal-agnostic training.
I think humans’ long-horizon performance isn’t mostly based on RL training, but our ability to reason and to learn important principles (some from direct success/failure at LTH tasks, some from vicarious experience or advice). So I expect the type of CoT RL training used in o1 to be used, as well as extensions to general reasoning where there’s not a perfectly check-able correct answer. That allows good System 2 reasoning performance, which I think is the biggerst basis of humans’ ability to perform useful LTH tasks.
Combining that with some form of continuous learning (either better episodic memory than vector databases and/or fine-tuning for facts/skills judged as useful) seems like all we need to get to human level.
Probably there will be some end-to-end performance RL, but that will still be mixed with strong contributions from reasoning about how to achieve a user-defined goal.
Gauging how much goal-directed RL is too much isn’t an ideal situation to be in, but it seems like if there’s not too much, instruction-following alignment will work.
WRT to cognitive biases, end-to-end training would increase some desired biases while decreasing some that are hurting performance (sometimes correct answers are very useful).
MR as humans experience it is only optimial within our very sharp cognitive limitations, and the types of tasks we tend to take on. So optimal MR for agents will be fairly different.
I’m curious about your curiousity; is it just that, or are you seeing a strong connection between biases in LMAs and their alignment?
Huh, isn’t this exactly backwards? Presumably r1 and QwQ got that way due to lots of end-to-end training. They aren’t LMPs/bureaucracies.
...reading onward I don’t think we disagree much about what the architecture will look like though. It sounds like you agree that probably there’ll be some amount of end-to-end training and the question is how much?
My curiosity stems from:
1. Generic curiosity about how minds work. It’s an important and interesting topic and MR is a bias that we’ve observed empirically but don’t have a mechanistic story for why the structure of the mind causes that bias—at least, I don’t have such a story but it seems like you do!
2. Hope that we could build significantly more rational AI agents in the near future, prior to the singularity, which could then e.g. participate in massive liquid virtual prediction markets and improve human collective epistemics greatly.
Ah- now now I see how we’re using end-to-end training a little differently.
I’m thinking of end-to-end training as training a CoT, as in o1 etc, AND training an outer-loop control scheme for organizing complex plans and tasks. That outer-loop training is what I’m not sure will be helpful. You can script roughly how humans solve complex tasks, I think in a way that will help and not get in the way of the considerable power of the trained CoT. So I still expect this to play a role; I just don’t know how big a role it will play.
I agree that training CoT will be done, and has important implications for alignment, particularly in making CoTs opaque or unfaithful.
Reason 1: makes sense. One reason I never got around to publishing my work in comprehensible form is that it’s just adding mechanistic detail to an earlier essentially-correct theory that it’s just the result of applying self-interest (or equivalently, RL) to decisions about beliefs, in the context of our cognitive limitations. I’ll try to dig up the reference when I get a little time.
Reason 2: Interesting. I do hope we can align early agents well enough to get nontrivial help from them in solving the remaining alignment problems, both for AGI agents and for the power structures that are deploying and controlling them. Biases in their thinking have been less of a concern for me than their capabilities, but they will play a role. Sycophancy in particular seems like the language model equivalent of human motivated reasoning, and it could really wreck agents’ usefulness in making their user’s/controllers actions more sane.