Given a 0.3% current acute infection rate and some epidemiological modeling they estimate 1% of their total population has been infected, with a death rate of 0.77%.
Yup. 0.77% is also what I keep stumbling upon when I look into various data points about the IFR! It’s my best guess about where Iceland’s IFR will end up, and very close to my best guess for proper age adjustment for the Diamond Princess.
Hardly an unbiased sample, but of 200+ pregnant women coming into a hospital to give birth that were blanket-tested, 15.3% tested positive.
Of this set of positive tests, only 12% of them were symptomatic on admission, and a further 10% developed symptoms over the course of their 2-day-long stays bringing it to a total of 22% symptomatic upon discharge or transfer. Presumably already-symptomatic women were more likely to be in the hospital already.
Doing a little armchair epidemiology. Let’s assume that half of the deaths of currently infected people have happened, due to the lockdown extending the doubling time from three days to more than a week. We get:
~8000 deaths * 2 / (15.3% of 8 million) = 1.3% infection to mortality rate.
If we assume that there were more symptomatic women who didn’t show up to normal birthing due to going to the hospital for COVID symptoms, we get a lower death rate. If 20% of the total population is infected, we get a 1% mortality rate. Could go lower if the doubling time has slowed less than my assumption, or if people who have recovered constitute a large enough actual segment of the population. Probably can’t account for more than a factor of two though, given known recovery times.
Compare this to what I wrote 21 hours ago, based on serology data from Italy and Germany:
‘From this, I estimate that at least 10% and possibly up to 20% of New York City has been infected, given the delay between infections and deaths. (100*8000 = 800,000, out of about 8 million) ’
Some non-serology blanket RNA tests coming out of Austria.
https://www.theguardian.com/world/2020/apr/10/less-than-1-of-austria-infected-with-coronavirus-new-study-shows
Given a 0.3% current acute infection rate and some epidemiological modeling they estimate 1% of their total population has been infected, with a death rate of 0.77%.
Everything seems to be converging...
Yup. 0.77% is also what I keep stumbling upon when I look into various data points about the IFR! It’s my best guess about where Iceland’s IFR will end up, and very close to my best guess for proper age adjustment for the Diamond Princess.
New, amazing data from New York, as of April 13. https://www.nejm.org/doi/full/10.1056/NEJMc2009316
Hardly an unbiased sample, but of 200+ pregnant women coming into a hospital to give birth that were blanket-tested, 15.3% tested positive.
Of this set of positive tests, only 12% of them were symptomatic on admission, and a further 10% developed symptoms over the course of their 2-day-long stays bringing it to a total of 22% symptomatic upon discharge or transfer. Presumably already-symptomatic women were more likely to be in the hospital already.
Doing a little armchair epidemiology. Let’s assume that half of the deaths of currently infected people have happened, due to the lockdown extending the doubling time from three days to more than a week. We get:
~8000 deaths * 2 / (15.3% of 8 million) = 1.3% infection to mortality rate.
If we assume that there were more symptomatic women who didn’t show up to normal birthing due to going to the hospital for COVID symptoms, we get a lower death rate. If 20% of the total population is infected, we get a 1% mortality rate. Could go lower if the doubling time has slowed less than my assumption, or if people who have recovered constitute a large enough actual segment of the population. Probably can’t account for more than a factor of two though, given known recovery times.
Compare this to what I wrote 21 hours ago, based on serology data from Italy and Germany:
‘From this, I estimate that at least 10% and possibly up to 20% of New York City has been infected, given the delay between infections and deaths. (100*8000 = 800,000, out of about 8 million) ’