I think that paper is some evidence that there’s typically no huge effect from internal activations being optimized for predicting future tokens (on natural language). But I don’t think it’s much (if any) evidence that this doesn’t happen to some small extent or that it couldn’t be a huge effect on certain other natural language tasks.
(In fact, I think the myopia gap is probably the more relevant number than the local myopia bonus, in which case I’d argue the paper actually shows a pretty non-trivial effect, kind of contrary to how the authors interpret it. But I haven’t read the paper super closely.)
Also, sounds like you’re aware of this, but I’d want to highlight more that the paper does demonstrate internal activations being optimized for predicting future tokens on synthetic data where this is necessary. So, arguably, the main question is to what extent natural language data incentivizes this rather than being specifically about what transformers can/tend to do.
In that sense, thinking of transformer internals as “trying to” minimize the loss on an entire document might be exactly the right intuition empirically (and the question is mainly how different that is from being myopic on a given dataset). Given that the internal states are optimized for this, that would also make sense theoretically IMO.
+1 to this comment, also I expect the importance of activations being optimized for predicting future tokens to increase considerably with scale. (E.g., GPT-4 level compute maybe just gets you a GPT-3 level model if you enforce no such optimization with a stop grad.)
I think that paper is some evidence that there’s typically no huge effect from internal activations being optimized for predicting future tokens (on natural language). But I don’t think it’s much (if any) evidence that this doesn’t happen to some small extent or that it couldn’t be a huge effect on certain other natural language tasks.
(In fact, I think the myopia gap is probably the more relevant number than the local myopia bonus, in which case I’d argue the paper actually shows a pretty non-trivial effect, kind of contrary to how the authors interpret it. But I haven’t read the paper super closely.)
Also, sounds like you’re aware of this, but I’d want to highlight more that the paper does demonstrate internal activations being optimized for predicting future tokens on synthetic data where this is necessary. So, arguably, the main question is to what extent natural language data incentivizes this rather than being specifically about what transformers can/tend to do.
In that sense, thinking of transformer internals as “trying to” minimize the loss on an entire document might be exactly the right intuition empirically (and the question is mainly how different that is from being myopic on a given dataset). Given that the internal states are optimized for this, that would also make sense theoretically IMO.
+1 to this comment, also I expect the importance of activations being optimized for predicting future tokens to increase considerably with scale. (E.g., GPT-4 level compute maybe just gets you a GPT-3 level model if you enforce no such optimization with a stop grad.)