This equation for a conditional probability, although mathematically equivalent, may be intuitively easier to understand. It can be interpreted as “the probability of B occurring multiplied by the probability of A occurring, provided that B has occurred, is equal to the probability of the A and B occurrences together, although not necessarily occurring at the same time”. Additionally, this may be preferred philosophically; under major probability interpretations, such as the subjective theory, conditional probability is considered a primitive entity. Moreover, this “multiplication rule” can be practically useful in computing the probability of
and introduces a symmetry with the summation axiom for Poincaré Formula
Not sure I understand. My question was, what kind of probability theory can support things like “P(X|Y) is defined but P(Y) isn’t”. The snippet you give doesn’t seem relevant to that, as it assumes both values are defined.
The kind of probability theory that defines P(X|Y) axiomatically as a primitive entity and only then defines P(X&Y) as a multiplication of P(X|Y) and P(Y), instead of defining conditional probability as a ratio between P(X&Y) and P(Y).
While it’s mathematically equivalent, the former method is more resembling the way people deal with probabilities in practice—usually conditional probability is known and probability of an intersection isn’t—and formally allows us to talk about conditional probabilities, even when the probability of an event we condition on is not defined.
Sure. But this has already been done and took much less trouble than you might have though. Citing Wikipedia on Conditional Probability:
Not sure I understand. My question was, what kind of probability theory can support things like “P(X|Y) is defined but P(Y) isn’t”. The snippet you give doesn’t seem relevant to that, as it assumes both values are defined.
The kind of probability theory that defines P(X|Y) axiomatically as a primitive entity and only then defines P(X&Y) as a multiplication of P(X|Y) and P(Y), instead of defining conditional probability as a ratio between P(X&Y) and P(Y).
While it’s mathematically equivalent, the former method is more resembling the way people deal with probabilities in practice—usually conditional probability is known and probability of an intersection isn’t—and formally allows us to talk about conditional probabilities, even when the probability of an event we condition on is not defined.