I have to say that it sure does seem like there ought to be some way to use the notion of frequentist probability to construct subjective probability along these lines.
Assign a measure to each possible world (the prior probabilities). For some state of knowledge K, some set of worlds Ck is consistent with K (say, the set in which there is a brain containing K). For some proposition X, X is true in some set of worlds Cx. The subjective probability P(X|K) = measure(intersection(Ck,Cx)) / measure(Ck). Bayesian updating is equivalent to removing worlds from K. To make it purely frequentist, give each world measure 1 and use multisets.
I have to say that it sure does seem like there ought to be some way to use the notion of frequentist probability to construct subjective probability along these lines.
Assign a measure to each possible world (the prior probabilities). For some state of knowledge K, some set of worlds Ck is consistent with K (say, the set in which there is a brain containing K). For some proposition X, X is true in some set of worlds Cx. The subjective probability P(X|K) = measure(intersection(Ck,Cx)) / measure(Ck). Bayesian updating is equivalent to removing worlds from K. To make it purely frequentist, give each world measure 1 and use multisets.
Does that work?