For illustration, what would be an example of having different shards for “I get food” (F) and “I see my parents again” (P) compared to having one utility distribution over F∧P, F∧¬P, ¬F∧P, ¬F∧¬P?
I think this is also what I was confused about—TurnTrout says that AIXI is not a shard-theoretic agent because it just has one utility function, but typically we imagine that the utility function itself decomposes into parts e.g. +10 utility for ice cream, +5 for cookies, etc. So the difference must not be about the decomposition into parts, but the possibility of independent activation? but what does that mean? Perhaps it means: The shards aren’t always applied, but rather only in some circumstances does the circuitry fire at all, and there are circumstances in which shard A fires without B and vice versa. (Whereas the utility function always adds up cookies and ice cream, even if there are no cookies and ice cream around?) I still feel like I don’t understand this.
For illustration, what would be an example of having different shards for “I get food” (F) and “I see my parents again” (P) compared to having one utility distribution over F∧P, F∧¬P, ¬F∧P, ¬F∧¬P?
I think this is also what I was confused about—TurnTrout says that AIXI is not a shard-theoretic agent because it just has one utility function, but typically we imagine that the utility function itself decomposes into parts e.g. +10 utility for ice cream, +5 for cookies, etc. So the difference must not be about the decomposition into parts, but the possibility of independent activation? but what does that mean? Perhaps it means: The shards aren’t always applied, but rather only in some circumstances does the circuitry fire at all, and there are circumstances in which shard A fires without B and vice versa. (Whereas the utility function always adds up cookies and ice cream, even if there are no cookies and ice cream around?) I still feel like I don’t understand this.