Doesn’t the trend line already take into account the effect you are positing? ML research engineers already say they get significant and increasing productivity boosts from AI assistants and have been for some time. I think the argument you are making is double-counting this. (Unless you want to argue that the kink with Claude is the start of the super-exponential, which we would presumably get data on pretty soon).
I indeed think that AI assistance has been accelerating AI progress. However, so far the effect has been very small, like single-digit percentage points. So it won’t be distinguishable in the data from zero. But in the future if trends continue the effect will be large, possibly enough to more than counteract the effect of scaling slowing down, possibly not, we shall see.
Research engineers I talk to already report >3x speedups from AI assistants. It seems like that has to be enough that it would be showing up in the numbers. My null hypothesis would be that programmer productivity is increasing exponentially and has been for ~2 years, and this is already being taken into account in the curves, and without this effect you would see a slower (though imo not massively slower) exponential.
(This would argue for dropping the pre-2022 models from the graph which I think would give slightly faster doubling times, on the order of 5-6 months if I had to eyeball.).
Research engineers I talk to already report >3x speedups from AI assistants
Huh, I would be extremely surprised by this number. I program most days, in domains where AI assistance is particularly useful (frontend programming with relatively high churn), and I am definitely not anywhere near 3x total speedup. Maybe a 1.5x, maybe a 2x on good weeks, but definitely not a 3x. A >3x in any domain would be surprising, and my guess is generalization for research engineer code (as opposed to churn-heavy frontend development) is less.
I think my front-end productivity might be up 3x? A shoggoth helped me building a stripe shop and do a ton of UI design that I would’ve been hesitant to take on myself (without hiring someone else to work with), as well as quality increase in speed of churning through front-end designs.
(This is going from “wouldn’t take on the project due to low skill” to “can take it on and deliver it in a reasonable amount of time”, which is different from “takes top programmer and speeds them up 3x”.)
I agree with habryka that the current speedup is probably substantially less than 3x.
However, worth keeping in mind that if it were 3x for engineering the overall AI progress speedup would be substantially lower, due to (a) non-engineering activities having a lower speedup, (b) compute bottlenecks, (c) half of the default pace of progress coming from compute.
My null hypothesis would be that programmer productivity is increasing exponentially and has been for ~2 years, and this is already being taken into account in the curves, and without this effect you would see a slower (though imo not massively slower) exponential
Exponential growth alone doesn’t imply a significant effect here, if the current absolute speedup is low.
I don’t believe it. I don’t believe that overall algorithmic progress is 3x faster. Maaaybe coding is 3x faster but that would maybe increase overall algo progress by like 30% idk. But also I don’t think coding is really 3x faster on average for the things that matter.
I meant coding in particular, I agree algorithmic progress is not 3x faster. I checked again just now with someone and they did indeed report 3x speedup for writing code, although said that the new bottleneck becomes waiting for experiments to run (note this is not obviously something that can be solved by greater automation, at least up until the point that AI is picking better experiments than humans).
Doesn’t the trend line already take into account the effect you are positing? ML research engineers already say they get significant and increasing productivity boosts from AI assistants and have been for some time. I think the argument you are making is double-counting this. (Unless you want to argue that the kink with Claude is the start of the super-exponential, which we would presumably get data on pretty soon).
I indeed think that AI assistance has been accelerating AI progress. However, so far the effect has been very small, like single-digit percentage points. So it won’t be distinguishable in the data from zero. But in the future if trends continue the effect will be large, possibly enough to more than counteract the effect of scaling slowing down, possibly not, we shall see.
Research engineers I talk to already report >3x speedups from AI assistants. It seems like that has to be enough that it would be showing up in the numbers. My null hypothesis would be that programmer productivity is increasing exponentially and has been for ~2 years, and this is already being taken into account in the curves, and without this effect you would see a slower (though imo not massively slower) exponential.
(This would argue for dropping the pre-2022 models from the graph which I think would give slightly faster doubling times, on the order of 5-6 months if I had to eyeball.).
Huh, I would be extremely surprised by this number. I program most days, in domains where AI assistance is particularly useful (frontend programming with relatively high churn), and I am definitely not anywhere near 3x total speedup. Maybe a 1.5x, maybe a 2x on good weeks, but definitely not a 3x. A >3x in any domain would be surprising, and my guess is generalization for research engineer code (as opposed to churn-heavy frontend development) is less.
I think my front-end productivity might be up 3x? A shoggoth helped me building a stripe shop and do a ton of UI design that I would’ve been hesitant to take on myself (without hiring someone else to work with), as well as quality increase in speed of churning through front-end designs.
(This is going from “wouldn’t take on the project due to low skill” to “can take it on and deliver it in a reasonable amount of time”, which is different from “takes top programmer and speeds them up 3x”.)
I agree with habryka that the current speedup is probably substantially less than 3x.
However, worth keeping in mind that if it were 3x for engineering the overall AI progress speedup would be substantially lower, due to (a) non-engineering activities having a lower speedup, (b) compute bottlenecks, (c) half of the default pace of progress coming from compute.
Exponential growth alone doesn’t imply a significant effect here, if the current absolute speedup is low.
I don’t believe it. I don’t believe that overall algorithmic progress is 3x faster. Maaaybe coding is 3x faster but that would maybe increase overall algo progress by like 30% idk. But also I don’t think coding is really 3x faster on average for the things that matter.
I meant coding in particular, I agree algorithmic progress is not 3x faster. I checked again just now with someone and they did indeed report 3x speedup for writing code, although said that the new bottleneck becomes waiting for experiments to run (note this is not obviously something that can be solved by greater automation, at least up until the point that AI is picking better experiments than humans).