I don’t think that’s entirely correct; SSA, for example, is a halfer position and it does exclude worlds where you don’t exist, as do many other anthropic approaches.
Personally I’m generally skeptical of averaging over agents in any utility function.
Which is why I don’t use anthropic probability, because it leads to these kinds of absurdities. The halfer position is defined in the top post (as is the thirder), and your setup uses aspects of both approaches. If it’s incoherent, then SSA is incoherent, which I have no problem with. SSA != halfer.
Averaging makes a lot of sense if the number of agents is going to be increased and decreased in non-relevant ways.
Eg: you are an upload. Soon, you are going to experience eating a chocolate bar, then stubbing your toe, then playing a tough but intriguing game. During this time, you will be simulated on n computers, all running exactly the same program of you experiencing this, without any deviations. But n may vary from moment to moment. Should you be willing to pay to make n higher during pleasant experience or lower during unpleasant ones, given that you will never detect this change?
I think there are some rather significant assumptions underlying the idea that they are “non-relevant”. At the very least, if the agents were distinguishable, I think you should indeed be willing to pay to make n higher. On the other hand, if they’re indistinguishable then it’s a more difficult question, but the anthropic averaging I suggested in my previous comments leads to absurd results.
the anthropic averaging I suggested in my previous comments leads to absurd results.
The anthropic averaging leads to absurd results only because it wasn’t a utility function over states of the world. Under heads, it ranked 50%Roger+50%Jack differently from the average utility of those two worlds.
I don’t think that’s entirely correct; SSA, for example, is a halfer position and it does exclude worlds where you don’t exist, as do many other anthropic approaches.
Personally I’m generally skeptical of averaging over agents in any utility function.
Which is why I don’t use anthropic probability, because it leads to these kinds of absurdities. The halfer position is defined in the top post (as is the thirder), and your setup uses aspects of both approaches. If it’s incoherent, then SSA is incoherent, which I have no problem with. SSA != halfer.
Averaging makes a lot of sense if the number of agents is going to be increased and decreased in non-relevant ways.
Eg: you are an upload. Soon, you are going to experience eating a chocolate bar, then stubbing your toe, then playing a tough but intriguing game. During this time, you will be simulated on n computers, all running exactly the same program of you experiencing this, without any deviations. But n may vary from moment to moment. Should you be willing to pay to make n higher during pleasant experience or lower during unpleasant ones, given that you will never detect this change?
I think there are some rather significant assumptions underlying the idea that they are “non-relevant”. At the very least, if the agents were distinguishable, I think you should indeed be willing to pay to make n higher. On the other hand, if they’re indistinguishable then it’s a more difficult question, but the anthropic averaging I suggested in my previous comments leads to absurd results.
What’s your proposal here?
The anthropic averaging leads to absurd results only because it wasn’t a utility function over states of the world. Under heads, it ranked 50%Roger+50%Jack differently from the average utility of those two worlds.