Is this a case where orders of magnitude aren’t so important and absolute numbers are? I’m not sure how to even assign probabilities here, but let’s say we assign Baduhenna 0.0001% chance of existing, and Gleep 0.00000000000001%. That makes Baduhenna several orders of magnitude more likely than Gleep, but she’s still down in the noise below which we can reliably reason. For all practical purposes, Baduhenna and Gleep have the same likelihood of existing. I.e. the possibility of Baduhenna makes no more or less impact on my choices or anything else I believe in than does the possibility of Gleep.
Nobody makes sacrifices to Baduhenna. You might spend a hundred dollars to get a huge military advantage by making sacrifices to Baduhenna.
If you shut up and calculate a 0.0001% change for Baduhenna to exist might be enough to change actions.
A lot of people vote in presidential elections when the chance of their vote turning the election is worse than 0.0001%. If the chance of turning an election through voting was 0.00000000000001% nobody would go to vote.
There are probably various Xrisks with 0.0001% chance of happening. Separating them from Xrisks with 0.00000000000001% chance of happening is important.
My point is that we can’t shut up and calculate with probabilities of 0.0001% because we can’t reliably measure or reason with probabilities that small in day-to-day life (absent certain very carefully measured scientific and engineering problems with extremely high precision; e.g. certain cross-sections in particle physics).
I know I assign very low probability to Baduhenna, but what probability do I assign? 0.0001% 0.000001% less? I can’t tell you. There is a point at which we just say the probability is so close to zero as to be indistinguishable.
When you’re dealing with probabilities of specific events, be they XRisks or individual accidents, that have such low probability, the sensible course of action is to take general measures that improve your fitness against multiple risks, likely and unlikely. Otherwise the amount you invest in the highly salient 0.0001% chance events will take too much time away from the 10% events, and you’ll have decreased your fitness.
For example, you can imagine a very unlikely 0.0001% event in which a particular microbe mutates in a specific way and causes a pandemic. You could invest a lot of money in preventing that one microbe from becoming problematic. Or you could invest the same money in improving the the science of medicine, the emergency response system, and general healthcare available to the population. The latter will help against all microbes and a lot more risks.
My point is that we can’t shut up and calculate with probabilities of 0.0001% because we can’t reliably measure or reason with probabilities that small in day-to-day life
Do you vote in presidential elections?
Do you wear a seat belt every time you drive a car and would also do so if you make a vacation in a country without laws that force you to do it?
Or you could invest the same money in improving the the science of medicine
How do you know that will reduce and not increase the risk or a deadly bioengineered pandemic?
I know I assign very low probability to Baduhenna, but what probability do I assign? 0.0001% 0.000001% less? I can’t tell you.
Yes, reasoning about low probability events is hard. You might not have the mental skills to reason in a decent matter about low probability events.
On the other hand that doesn’t mean that reasoning about low probability events is inherently impossible.
You might not have the mental skills to reason in a decent matter about low probability events.
Do you? You were unable or unwilling to say how you came up with 10^-18 and 10^-15 in the matter of Zeus. (And no, I am not inclined to take your coming up with numbers as evidence that you employed any reasonable method to do so.)
I am not inclined to take your coming up with numbers as evidence that you employed any reasonable method to do so
Intuition can be a reasonable method when you have enough relevant information in your head.
I’m good enough that I wouldn’t make the mistake of calling Baduhenna existence or Zeus existence a 10^{-6} event.
Is it possible that I might have said 10^{-12} instead of 10^{-15} in I would have been in a different mood the day I wrote the post.
When we did Fermi estimates at the European Community Event in Berlin there was a moment where we had to estimate the force that light from the sun exerts on earth. We had no good idea about how to do a Fermi estimate. We settled for Jonas who thought he read the number in the past but couldn’t remember it writing down an intuitive guess. He wrote 10^9 and the correct answer was 5.5 * 10^8.
As a practical matter telling the difference between 10^{-15} and 10^{-12} isn’t that important. On the other hand reasoning about whether the chance that the Large Hadron collider creates a black hole that destroys earth is 10^{-6} or 10^{-12} is important.
I think a 10^{-6} chance for creating a black hole that destroys the earth should be enough to avoid doing experiments like that. In that case I think the probability wasn’t 10^{-6} and it was okay to run the experiment but with increased power of technology we might have more experiments that actually do have a 10^{-6} xrisk chance and we should avoid running them.
I don’t know what this means. On the basis of what would you decide what’s “reasonable” and what’s not?
There is a time-honored and quite popular technique called pulling numbers out of your ass. Calling it “intuition” doesn’t make the numbers smell any better.
See “If It’s Worth Doing, It’s Worth Doing With Made-Up Statistics” on Slate Star Codex, though I agree that a human’s intuition for probabilities well below 1e-9 is likely to be very unreliable (except for propositions in a reference class containing billions of very similar propositions, such as “John Doe will win the lottery this week and Jane Roe will win the lottery next week”).
The only thing that matters is making successful predictions. How they smell doesn’t.
To know at whether a method makes successful predictions you calibrate the method against other data. That then gives you an idea about how accurate your predictions happen to be.
Depending on the purpose for which you need the numbers different amounts of accuracy is good enough.
I’m not making some Pascal mugging argument that people are supposed to care more about Zeus where I need to know the difference between 10^{-15} and 10^{-16}. I made an argument about how many orders of magnitude my beliefs should be swayed.
My current belief in the probability of Zeus is uncertain enough that I have no idea if it changed by orders of magnitude, and I am very surprised that you seem to think the probability is in a narrow enough range that claiming to have increased it by order of magnitude becomes meaningful.
No, I can’t. Heuristics are a kind of algorithms that provide not optimal but adequate results. “Adequate” here means “sufficient for a particular real-life purpose”.
I don’t see how proclaiming that the probability of Zeus existing is 10^-12 is a heuristic.
Is this a case where orders of magnitude aren’t so important and absolute numbers are? I’m not sure how to even assign probabilities here, but let’s say we assign Baduhenna 0.0001% chance of existing, and Gleep 0.00000000000001%. That makes Baduhenna several orders of magnitude more likely than Gleep, but she’s still down in the noise below which we can reliably reason. For all practical purposes, Baduhenna and Gleep have the same likelihood of existing. I.e. the possibility of Baduhenna makes no more or less impact on my choices or anything else I believe in than does the possibility of Gleep.
The US military budget is billions.
Nobody makes sacrifices to Baduhenna. You might spend a hundred dollars to get a huge military advantage by making sacrifices to Baduhenna.
If you shut up and calculate a 0.0001% change for Baduhenna to exist might be enough to change actions.
A lot of people vote in presidential elections when the chance of their vote turning the election is worse than 0.0001%. If the chance of turning an election through voting was 0.00000000000001% nobody would go to vote.
There are probably various Xrisks with 0.0001% chance of happening. Separating them from Xrisks with 0.00000000000001% chance of happening is important.
My point is that we can’t shut up and calculate with probabilities of 0.0001% because we can’t reliably measure or reason with probabilities that small in day-to-day life (absent certain very carefully measured scientific and engineering problems with extremely high precision; e.g. certain cross-sections in particle physics).
I know I assign very low probability to Baduhenna, but what probability do I assign? 0.0001% 0.000001% less? I can’t tell you. There is a point at which we just say the probability is so close to zero as to be indistinguishable.
When you’re dealing with probabilities of specific events, be they XRisks or individual accidents, that have such low probability, the sensible course of action is to take general measures that improve your fitness against multiple risks, likely and unlikely. Otherwise the amount you invest in the highly salient 0.0001% chance events will take too much time away from the 10% events, and you’ll have decreased your fitness.
For example, you can imagine a very unlikely 0.0001% event in which a particular microbe mutates in a specific way and causes a pandemic. You could invest a lot of money in preventing that one microbe from becoming problematic. Or you could invest the same money in improving the the science of medicine, the emergency response system, and general healthcare available to the population. The latter will help against all microbes and a lot more risks.
Do you vote in presidential elections? Do you wear a seat belt every time you drive a car and would also do so if you make a vacation in a country without laws that force you to do it?
How do you know that will reduce and not increase the risk or a deadly bioengineered pandemic?
Yes, reasoning about low probability events is hard. You might not have the mental skills to reason in a decent matter about low probability events.
On the other hand that doesn’t mean that reasoning about low probability events is inherently impossible.
Do you? You were unable or unwilling to say how you came up with 10^-18 and 10^-15 in the matter of Zeus. (And no, I am not inclined to take your coming up with numbers as evidence that you employed any reasonable method to do so.)
Intuition can be a reasonable method when you have enough relevant information in your head.
I’m good enough that I wouldn’t make the mistake of calling Baduhenna existence or Zeus existence a 10^{-6} event.
Is it possible that I might have said 10^{-12} instead of 10^{-15} in I would have been in a different mood the day I wrote the post.
When we did Fermi estimates at the European Community Event in Berlin there was a moment where we had to estimate the force that light from the sun exerts on earth. We had no good idea about how to do a Fermi estimate. We settled for Jonas who thought he read the number in the past but couldn’t remember it writing down an intuitive guess. He wrote 10^9 and the correct answer was 5.5 * 10^8.
As a practical matter telling the difference between 10^{-15} and 10^{-12} isn’t that important. On the other hand reasoning about whether the chance that the Large Hadron collider creates a black hole that destroys earth is 10^{-6} or 10^{-12} is important.
I think a 10^{-6} chance for creating a black hole that destroys the earth should be enough to avoid doing experiments like that. In that case I think the probability wasn’t 10^{-6} and it was okay to run the experiment but with increased power of technology we might have more experiments that actually do have a 10^{-6} xrisk chance and we should avoid running them.
I don’t know what this means. On the basis of what would you decide what’s “reasonable” and what’s not?
There is a time-honored and quite popular technique called pulling numbers out of your ass. Calling it “intuition” doesn’t make the numbers smell any better.
See “If It’s Worth Doing, It’s Worth Doing With Made-Up Statistics” on Slate Star Codex, though I agree that a human’s intuition for probabilities well below 1e-9 is likely to be very unreliable (except for propositions in a reference class containing billions of very similar propositions, such as “John Doe will win the lottery this week and Jane Roe will win the lottery next week”).
The only thing that matters is making successful predictions. How they smell doesn’t. To know at whether a method makes successful predictions you calibrate the method against other data. That then gives you an idea about how accurate your predictions happen to be.
Depending on the purpose for which you need the numbers different amounts of accuracy is good enough. I’m not making some Pascal mugging argument that people are supposed to care more about Zeus where I need to know the difference between 10^{-15} and 10^{-16}. I made an argument about how many orders of magnitude my beliefs should be swayed.
My current belief in the probability of Zeus is uncertain enough that I have no idea if it changed by orders of magnitude, and I am very surprised that you seem to think the probability is in a narrow enough range that claiming to have increased it by order of magnitude becomes meaningful.
You can compute the likelihood ratio without knowing the absolute probability.
Being surprised is generally a sign that it’s useful to update a belief.
I would add that given my model of you it doesn’t surprise me that this surprises you.
You can call it heuristics, if you want to...
No, I can’t. Heuristics are a kind of algorithms that provide not optimal but adequate results. “Adequate” here means “sufficient for a particular real-life purpose”.
I don’t see how proclaiming that the probability of Zeus existing is 10^-12 is a heuristic.
Intuition (or educated guesses like the ones referred to here), fall under the umbrella of heuristics.
In what way are you arguing that the number I gave for the existence of Zeus is insufficient for a particular real-life purpose?