I can visualize the moon. If I say the word “moon,” and you get a picture of the moon in your mind—or some such thing—then I feel like we’re on the same page. But I can’t visualize “infinity,” or when I do it turns out as above. If I say the word “infinity” and you visualize (or taste, or whatever) something similar, I feel like we’ve communicated, but then you would agree with my first line in the above post. Since you don’t agree, when I say “infinity,” you must get some very different representation in your mind. Does it do the concept any more justice that my representations? If so, please tell me how to experience it.
We refer to things with signs. The signs don’t have to be visual representations. We can think about things by employing the signs which refer to them. What makes the sign for (say) countable infinity refer to it is the way that the sign is used in a mathematical theory (countable infinity being a mathematical concept). Learn the math, and you will learn the concept.
Compare to this: you probably cannot visualize the number 845,264,087,843,113. You can of course visualize the sign I just now wrote for it, but you cannot visualize the number itself (by, for example, visualizing a large bowl with exactly that number of pebbles in it). What you can do is visualize a bowl with a vast number of pebbles in it, while thinking the thought, “this imagined bowl has precisely 845,264,087,843,113 pebbles in it.” Here you would be relying entirely on the sign to make your mental picture into a picture of exactly that number of pebbles. In fact you could dispense with the picture entirely and keep only the sign, and you would successfully be thinking about that number, purely by employing its sign in your thoughts. Note that you can do operations on that sign, such as subtracting another number by manipulating the two signs via the method you learned as a child. So you have mastered (some of) the relevant math, so the sign, as you employ it, really does refer to that number.
Well I agree that I can think just with verbal signs, so long as the verbal sentences or symbolic statements mean something to me (could potentially pay rent*) or the symbols are eventually converted into some other representation that means something to me.
I can think with the infinity symbol, which doesn’t mean anything to me (unless it means what I first said above: in short, “way big enough”), and then later convert the result back into symbols that do mean something to me. So I’m fine with using infinity in math, as long as it’s just a formalism (a symbol) like that.
But here is one reason why I want to object to the “realist” interpretation of infinity via this argument that it’s just a formalism and has no physical or experiential interpretation, besides “way big enough”: The Christian god, for example, is supposed to be infinite this and infinite that. This isn’t intended—AFAIK—as a formalism nor as an approximation (“way powerful enough”), but as an actual statement. Once you realize this really isn’t communicating anything, theological noncognitivism is a snap: the entity in question is shown to be a mere symbol, if anything. (Or, to be completely fair, God could just be a really powerful, really smart dude.) I know there are other major problems with theology, but this approach seems cleanest.
*ETA: This needs an example. Say I have a verbal belief or get trusted verbal data, like a close friend says in a serious and urgent voice, “(You’d better) duck!” The sentence means something to me directly: it means I’ll be better off taking a certain action. That pays rent because I don’t get hit in the head by a snowball or something. To make it into thinking in words (just transforming sentences around using my knowledge of English grammar), my friend might have been a prankster and told me something of the form, “If not A, then not B. If C, then B. If A, then you’d better duck. By the way, C.” Then I’d have to do the semantic transforms to derive the conclusion: “(I’d better) duck!” which means something to me.
I did say I’m fine with using infinity in math as a formalism, and also that statements using it could be reconverted (using mathematical operations) into ones that do pay rent. It’s just that the symbol infinity doesn’t immediately mean anything to me (except my original definition).
But I am interested in the separate idea that limits employ infinite sequences. It of course depends on the definition of limit. The epsilon-delta definition in my highschool textbook didn’t use infinite sequences, except in the sense of “you could go on giving me epsilons and I could go on giving you deltas.” That definition of infinity (if we’ll call it that) directly means something to me: “this process of back and forth is not going to end.” There is also the infinitesimal approach of nonstandard analysis, but see my reply to ata for that.
statements using it could be reconverted (using mathematical operations) into ones that do pay rent.
If statement A can be converted into statement B and statement B pays rent, then statement A pays rent.
It’s just that the symbol infinity doesn’t immediately mean anything to me (except my original definition).
Your original definition:
I reject infinity as anything more than “a number that is big enough for it’s smallness to be negligible for the purpose at hand.”
Is a terrible one for most purposes, because for them, no matter how big you make a finite number, it won’t serve the purpose.
Also, meaning is not immediate. Your sense that a word means something may arise with no perceptible delay, but meaning takes time. To use the point you raised, meaning pays rent and rent takes time to pay. Anticipated sensory experiences are scheduled occur in the future, i.e. after a delay. The immediate sense that a word means something is not, itself, the meaning, but only a reliable intuition that the word means something. If you study the mathematics of infinity, then you will likewise develop the intuition that infinity means something.
The epsilon-delta definition in my highschool textbook didn’t use infinite sequences, except in the sense of “you could go on giving me epsilons and I could go on giving you deltas.”
The epsilon delta definition is meaningful because of the infinite divisibility of the reals.
That definition of infinity (if we’ll call it that) directly means something to me: “this process of back and forth is not going to end.”
Unlike your original definition, this is a good definition (at least, once it’s been appropriately cleaned up and made precise).
statements using it could be reconverted (using mathematical operations) into ones that do pay rent.
If statement A can be converted into statement B and statement B pays rent, then statement A pays rent.
Only if the mathematical operation is performed by pure logically entailment, which—if a meaningless definition of infinity is used and that definition is scrapped in the final statement—it would not be. We will just go on about what constitutes a mathematical operation and such, but all I am saying is that if there is a formal manipulation rule that says something like, “You can change the infinity symbol to ‘big enough’* here” (note: this is not logical entailment) then I have no objection to the use of the formal symbol “infinity.”
*ETA: or just use the definition we agree on instead. This is a minor technical point, hard to explain, and I’m not doing a good job of it. I’ll leave it in just in case you started a reply to it already, but I don’t think it will help many people understand what I’m talking about, rather than just reading the parts below this.
I reject infinity as anything more than “a number that is big enough for it’s smallness to be negligible for the purpose at hand.”
Is a terrible one for most purposes, because for them, no matter how big you make a finite number, it won’t serve the purpose.
For example? Although, if we agree on the definition below, there’s maybe no point.
The immediate sense that a word means something is not, itself, the meaning, but only a reliable intuition that the word means something.
That’s why I said “could potentially pay rent.”
The epsilon-delta definition in my highschool textbook didn’t use infinite sequences, except in the sense of “you could go on giving me epsilons and I could go on giving you deltas.”
But then it did use infinite sequences.
That definition of infinity (if we’ll call it that) directly means something to me: “this process of back and forth is not going to end.”
Unlike your original definition, this is a good definition (at least, once it’s been appropriately cleaned up and made precise).
Looks like we’re in agreement, then, and I am not a finitist if that is what is meant by infinite sequences.
But then, to take it back to the original, I still agree with Eliezer that an “infinite set” is a dubious concept. Infinite as an adverb I can take (describes a process that isn’t going to end (in the sense that expecting it to end never pays rent)); infinite as an adjective, and infinity the noun, seem like reification: Harmless in some contexts, but harmful in others.
For example? Although, if we agree on the definition below, there’s maybe no point.
A very early appearance of infinity is the proof that there are infinitely many primes. It is most certainly not a proof that there is a very large but finite number of primes.
I can agree with “there are infinitely many primes” if I interpret it as something like “if I ever expect to run out of primes, that belief won’t pay rent.”
In this case, and in most cases in mathematics, these statements may look and operate the same—except mine might be slower and harder to work with. So why do I insist on it? I’m happy to work with infinities for regular math stuff, but there are some cases where it does matter, and these might all be outside of pure math. But in applied math there can be problems if infinity is taken seriously as a static concept rather than as a process where the expectation that it will end will never pay rent.
Like if someone said, “Black holes have infinite density,” I would have to ask for clarification. Can it be put into a verbal form at least? How would it pay rent in terms of measurements? That kind of thing.
Like if someone said, “Black holes have infinite density,” I would have to ask for clarification.
Actually, the way I learned calculus, allowable values of functions are real (or complex), not infinite. The value of the function 1/x at x=0 is not “infinity”, but “undefined” (which is to say, there is no function at that point); similarly for derivatives of functions where the functions go vertical. Since that time, I discovered that apparently physicists have supplemented the calculus I know with infinite values. They actually did it because this was useful to them. Don’t ask me why, I don’t remember. But here is a case where the pure math does not have infinities, and then the practical folk over in the physics department add them in. Apparently the practical folk think that infinity can pay rent.
As for gravitational singularities, the problem here is not the concept of infinity. That is an innocent bystander. The problem is that the math breaks down. That happens even if you replace “infinite” with “undefined”.
This isn’t really correct. Allowable values of functions are whatever you want. If you define a function on R-{0} by “x goes to 1/x”, it’s not defined at 0; I explicitly excluded it from the domain. If you define a function on R by “x goes to 1/x”… you can’t, there’s no such thing as 1⁄0. If you define a function on R by “x goes to 1/x if x is nonzero, and 0 goes to infinity”, this is a perfectly sensible function, which it is convenient to just abbreviate as “1/x”. Though for obvious reasons I would only recommend doing this if the “infinity” you are using represents both arbitrarily large positive and negative quantities. (EDIT: But if you want to define a function on [0,infty) by “x goes to 1/x if x is nonzero, and 0 goes to infinity” with “infinity” now only being large in the positive direction, which is likely what’s actually under consideration here, then this is not so dumb.)
All this is irrelevant to any actual physical questions, where whether using infinities is appropriate or not just depends on, well, the physics of it.
Yes, and of course which theory will be appropriate is going to be determined by the actual physics. My point is just that your statement that “pure math does not have infinities” and physicists “added them in” is wrong (even ignoring historical inaccuracies).
But here is a case where the pure math does not have infinities
That is not a statement that the field of mathematics does not have infinities. I was referring specifically to “the way I learned calculus”. Unless you took my class, you don’t know what I did or did not learn and how I learned it. My statement was true, your “correction” was false.
Ah, sorry then. This is the sort of mistake I that’s common enough that it seemed more obvious to me to read it the that way rather than the literal and correct way.
As for gravitational singularities, the problem here is not the concept of infinity. That is an innocent bystander. The problem is that the math breaks down.
I never really got why the math is said to ‘break down’. Is it just because of a divide by zero thing or something more significant? I guess I just don’t see a particular problem with having a part of the universe really being @%%@ed up like that.
I guess I just don’t see a particular problem with having a part of the universe really being @%%@ed up like that.
What I think is more likely is that the universe does not actually divide by zero, and the singularity is a gap in our knowledge. Gaps in knowledge are the problem of science, whose function is to fill them.
“Infinity-noncognitivist” would be more accurate in my case (but it all depends on the definition; I await one that I can see how to interpret, and I accept all the ones that I already know how to interpret [some mentioned above]).
I can visualize the moon. If I say the word “moon,” and you get a picture of the moon in your mind—or some such thing—then I feel like we’re on the same page. But I can’t visualize “infinity,” or when I do it turns out as above. If I say the word “infinity” and you visualize (or taste, or whatever) something similar, I feel like we’ve communicated, but then you would agree with my first line in the above post. Since you don’t agree, when I say “infinity,” you must get some very different representation in your mind. Does it do the concept any more justice that my representations? If so, please tell me how to experience it.
We refer to things with signs. The signs don’t have to be visual representations. We can think about things by employing the signs which refer to them. What makes the sign for (say) countable infinity refer to it is the way that the sign is used in a mathematical theory (countable infinity being a mathematical concept). Learn the math, and you will learn the concept.
Compare to this: you probably cannot visualize the number 845,264,087,843,113. You can of course visualize the sign I just now wrote for it, but you cannot visualize the number itself (by, for example, visualizing a large bowl with exactly that number of pebbles in it). What you can do is visualize a bowl with a vast number of pebbles in it, while thinking the thought, “this imagined bowl has precisely 845,264,087,843,113 pebbles in it.” Here you would be relying entirely on the sign to make your mental picture into a picture of exactly that number of pebbles. In fact you could dispense with the picture entirely and keep only the sign, and you would successfully be thinking about that number, purely by employing its sign in your thoughts. Note that you can do operations on that sign, such as subtracting another number by manipulating the two signs via the method you learned as a child. So you have mastered (some of) the relevant math, so the sign, as you employ it, really does refer to that number.
Well I agree that I can think just with verbal signs, so long as the verbal sentences or symbolic statements mean something to me (could potentially pay rent*) or the symbols are eventually converted into some other representation that means something to me.
I can think with the infinity symbol, which doesn’t mean anything to me (unless it means what I first said above: in short, “way big enough”), and then later convert the result back into symbols that do mean something to me. So I’m fine with using infinity in math, as long as it’s just a formalism (a symbol) like that.
But here is one reason why I want to object to the “realist” interpretation of infinity via this argument that it’s just a formalism and has no physical or experiential interpretation, besides “way big enough”: The Christian god, for example, is supposed to be infinite this and infinite that. This isn’t intended—AFAIK—as a formalism nor as an approximation (“way powerful enough”), but as an actual statement. Once you realize this really isn’t communicating anything, theological noncognitivism is a snap: the entity in question is shown to be a mere symbol, if anything. (Or, to be completely fair, God could just be a really powerful, really smart dude.) I know there are other major problems with theology, but this approach seems cleanest.
*ETA: This needs an example. Say I have a verbal belief or get trusted verbal data, like a close friend says in a serious and urgent voice, “(You’d better) duck!” The sentence means something to me directly: it means I’ll be better off taking a certain action. That pays rent because I don’t get hit in the head by a snowball or something. To make it into thinking in words (just transforming sentences around using my knowledge of English grammar), my friend might have been a prankster and told me something of the form, “If not A, then not B. If C, then B. If A, then you’d better duck. By the way, C.” Then I’d have to do the semantic transforms to derive the conclusion: “(I’d better) duck!” which means something to me.
To know reality we employ physics. Physics employs calculus. Calculus employs limits. Limits employ infinite sequences. Does that pay enough rent?
I did say I’m fine with using infinity in math as a formalism, and also that statements using it could be reconverted (using mathematical operations) into ones that do pay rent. It’s just that the symbol infinity doesn’t immediately mean anything to me (except my original definition).
But I am interested in the separate idea that limits employ infinite sequences. It of course depends on the definition of limit. The epsilon-delta definition in my highschool textbook didn’t use infinite sequences, except in the sense of “you could go on giving me epsilons and I could go on giving you deltas.” That definition of infinity (if we’ll call it that) directly means something to me: “this process of back and forth is not going to end.” There is also the infinitesimal approach of nonstandard analysis, but see my reply to ata for that.
If statement A can be converted into statement B and statement B pays rent, then statement A pays rent.
Your original definition:
Is a terrible one for most purposes, because for them, no matter how big you make a finite number, it won’t serve the purpose.
Also, meaning is not immediate. Your sense that a word means something may arise with no perceptible delay, but meaning takes time. To use the point you raised, meaning pays rent and rent takes time to pay. Anticipated sensory experiences are scheduled occur in the future, i.e. after a delay. The immediate sense that a word means something is not, itself, the meaning, but only a reliable intuition that the word means something. If you study the mathematics of infinity, then you will likewise develop the intuition that infinity means something.
The epsilon delta definition is meaningful because of the infinite divisibility of the reals.
Unlike your original definition, this is a good definition (at least, once it’s been appropriately cleaned up and made precise).
Only if the mathematical operation is performed by pure logically entailment, which—if a meaningless definition of infinity is used and that definition is scrapped in the final statement—it would not be. We will just go on about what constitutes a mathematical operation and such, but all I am saying is that if there is a formal manipulation rule that says something like, “You can change the infinity symbol to ‘big enough’* here” (note: this is not logical entailment) then I have no objection to the use of the formal symbol “infinity.”
*ETA: or just use the definition we agree on instead. This is a minor technical point, hard to explain, and I’m not doing a good job of it. I’ll leave it in just in case you started a reply to it already, but I don’t think it will help many people understand what I’m talking about, rather than just reading the parts below this.
For example? Although, if we agree on the definition below, there’s maybe no point.
That’s why I said “could potentially pay rent.”
Looks like we’re in agreement, then, and I am not a finitist if that is what is meant by infinite sequences.
But then, to take it back to the original, I still agree with Eliezer that an “infinite set” is a dubious concept. Infinite as an adverb I can take (describes a process that isn’t going to end (in the sense that expecting it to end never pays rent)); infinite as an adjective, and infinity the noun, seem like reification: Harmless in some contexts, but harmful in others.
A very early appearance of infinity is the proof that there are infinitely many primes. It is most certainly not a proof that there is a very large but finite number of primes.
I can agree with “there are infinitely many primes” if I interpret it as something like “if I ever expect to run out of primes, that belief won’t pay rent.”
In this case, and in most cases in mathematics, these statements may look and operate the same—except mine might be slower and harder to work with. So why do I insist on it? I’m happy to work with infinities for regular math stuff, but there are some cases where it does matter, and these might all be outside of pure math. But in applied math there can be problems if infinity is taken seriously as a static concept rather than as a process where the expectation that it will end will never pay rent.
Like if someone said, “Black holes have infinite density,” I would have to ask for clarification. Can it be put into a verbal form at least? How would it pay rent in terms of measurements? That kind of thing.
Actually, the way I learned calculus, allowable values of functions are real (or complex), not infinite. The value of the function 1/x at x=0 is not “infinity”, but “undefined” (which is to say, there is no function at that point); similarly for derivatives of functions where the functions go vertical. Since that time, I discovered that apparently physicists have supplemented the calculus I know with infinite values. They actually did it because this was useful to them. Don’t ask me why, I don’t remember. But here is a case where the pure math does not have infinities, and then the practical folk over in the physics department add them in. Apparently the practical folk think that infinity can pay rent.
As for gravitational singularities, the problem here is not the concept of infinity. That is an innocent bystander. The problem is that the math breaks down. That happens even if you replace “infinite” with “undefined”.
This isn’t really correct. Allowable values of functions are whatever you want. If you define a function on R-{0} by “x goes to 1/x”, it’s not defined at 0; I explicitly excluded it from the domain. If you define a function on R by “x goes to 1/x”… you can’t, there’s no such thing as 1⁄0. If you define a function on R by “x goes to 1/x if x is nonzero, and 0 goes to infinity”, this is a perfectly sensible function, which it is convenient to just abbreviate as “1/x”. Though for obvious reasons I would only recommend doing this if the “infinity” you are using represents both arbitrarily large positive and negative quantities. (EDIT: But if you want to define a function on [0,infty) by “x goes to 1/x if x is nonzero, and 0 goes to infinity” with “infinity” now only being large in the positive direction, which is likely what’s actually under consideration here, then this is not so dumb.)
All this is irrelevant to any actual physical questions, where whether using infinities is appropriate or not just depends on, well, the physics of it.
They are limited by the scope of whatever theory you are working in.
Yes, and of course which theory will be appropriate is going to be determined by the actual physics. My point is just that your statement that “pure math does not have infinities” and physicists “added them in” is wrong (even ignoring historical inaccuracies).
Selective quotation. I said:
That is not a statement that the field of mathematics does not have infinities. I was referring specifically to “the way I learned calculus”. Unless you took my class, you don’t know what I did or did not learn and how I learned it. My statement was true, your “correction” was false.
Ah, sorry then. This is the sort of mistake I that’s common enough that it seemed more obvious to me to read it the that way rather than the literal and correct way.
I might call engineers “practical folk”; astrophysicists I’m not so sure. I’d like to see their reason for doing so.
I never really got why the math is said to ‘break down’. Is it just because of a divide by zero thing or something more significant? I guess I just don’t see a particular problem with having a part of the universe really being @%%@ed up like that.
What I think is more likely is that the universe does not actually divide by zero, and the singularity is a gap in our knowledge. Gaps in knowledge are the problem of science, whose function is to fill them.
I’m really surprised at the amount of anti-infinitism that rolls around Less Wrong.
“Infinity-noncognitivist” would be more accurate in my case (but it all depends on the definition; I await one that I can see how to interpret, and I accept all the ones that I already know how to interpret [some mentioned above]).
It’s not just you. There was just recently another thread going on about how the real numbers ought to be countable and what-not.