I like the thought. I don’t know if this sketch works out, partly because I don’t fully understand it. your conclusion seems plausible but I want to develop the arguments further.
As a note: the simplest function period probably is the constant function, and other very simple functions probably make both power-seeking and not-power-seeking optimal. So if you permute that one, you’ll get another function for which power-seeking and not-power-seeking actions are both optimal.
Oh interesting… so then what I need for my argument is not the simplest function period, but the simplest function that doesn’t make both power-seeking and not-power-seeking both optimal? (isn’t that probably just going to be the simplest function that doesn’t make everything optimal?)
I admit I am probably conceptually confused in a bunch of ways, I haven’t read your post closely yet.
I like the thought. I don’t know if this sketch works out, partly because I don’t fully understand it. your conclusion seems plausible but I want to develop the arguments further.
As a note: the simplest function period probably is the constant function, and other very simple functions probably make both power-seeking and not-power-seeking optimal. So if you permute that one, you’ll get another function for which power-seeking and not-power-seeking actions are both optimal.
Oh interesting… so then what I need for my argument is not the simplest function period, but the simplest function that doesn’t make both power-seeking and not-power-seeking both optimal? (isn’t that probably just going to be the simplest function that doesn’t make everything optimal?)
I admit I am probably conceptually confused in a bunch of ways, I haven’t read your post closely yet.