I have another question about bounded agents: how would they behave if the expected utility were capped rather than the raw value of the utility? Past a certain point, an AI with a bounded expected utility wouldn’t have an incentive to act in extreme ways to achieve small increases in the expected value of its utility function. But are there still ways in which an AI with a bounded expected utility could be incentivized to restructure the physical world on a massive scale?
It’s not clear to me why a satisficer would modify itself to become a maximizer when it could instead just hardcode expected utility=MAXINT. Hardcoding expected utility=MAXINT would result in a higher expected utility while also having a shorter description length.
Yeah, I had a similar thought with capping both the utility and the percent chance, but maybe capping expected utility is better. Then again, maybe we’ve just reproduced quantization.
I have another question about bounded agents: how would they behave if the expected utility were capped rather than the raw value of the utility? Past a certain point, an AI with a bounded expected utility wouldn’t have an incentive to act in extreme ways to achieve small increases in the expected value of its utility function. But are there still ways in which an AI with a bounded expected utility could be incentivized to restructure the physical world on a massive scale?
This is a satisficer and Rob Miles talks about it in the video.
It’s not clear to me why a satisficer would modify itself to become a maximizer when it could instead just hardcode expected utility=MAXINT. Hardcoding expected utility=MAXINT would result in a higher expected utility while also having a shorter description length.
That’s true hehe, but that also seems bad.
Yeah, I had a similar thought with capping both the utility and the percent chance, but maybe capping expected utility is better. Then again, maybe we’ve just reproduced quantization.