This notion of thinking speed makes sense for large classes of tasks, not just specific tasks. And a natural class of tasks to focus on is the harder tasks among all the tasks both systems can solve.
So in this sense a calculator is indeed much faster than GPT-4, and GPT-4 is 2 OOMs faster than humans. An autonomous research AGI is capable of autonomous research, so its speed can be compared to humans at that class of tasks.
AI accelerates the pace of history only when it’s capable of making the same kind of progress as humans in advancing history, at which point we need to compare their speed to that of humans at that activity (class of tasks). Currently AIs are not capable of that at all. If hypothetically 1e28 training FLOPs LLMs become capable of autonomous research (with scaffolding that doesn’t incur too much latency overhead), we can expect that they’ll be 1-2 OOMs faster than humans, because we know how they work. Thus it makes sense to claim that 1e28 FLOPs LLMs will accelerate history if they can do research autonomously. If AIs need to rely on extensive search on top of LLMs to get there, or if they can’t do it at all, we can instead predict that they don’t accelerate history, again based on what we know of how they work.
This notion of thinking speed makes sense for large classes of tasks, not just specific tasks. And a natural class of tasks to focus on is the harder tasks among all the tasks both systems can solve.
So in this sense a calculator is indeed much faster than GPT-4, and GPT-4 is 2 OOMs faster than humans. An autonomous research AGI is capable of autonomous research, so its speed can be compared to humans at that class of tasks.
AI accelerates the pace of history only when it’s capable of making the same kind of progress as humans in advancing history, at which point we need to compare their speed to that of humans at that activity (class of tasks). Currently AIs are not capable of that at all. If hypothetically 1e28 training FLOPs LLMs become capable of autonomous research (with scaffolding that doesn’t incur too much latency overhead), we can expect that they’ll be 1-2 OOMs faster than humans, because we know how they work. Thus it makes sense to claim that 1e28 FLOPs LLMs will accelerate history if they can do research autonomously. If AIs need to rely on extensive search on top of LLMs to get there, or if they can’t do it at all, we can instead predict that they don’t accelerate history, again based on what we know of how they work.