After tinkering with a solution, and debating with myself how or whether to try it again here, I decided to post a definitive counter-argument to neq1′s article as a comment. It starts with the correct probability tree, which has (at least) five outcomes, not three. But I’ll use the unknown Q for one probability in it:
••••••• Monday---1---Waken; Pr(observe Heads and Monday)=Q/2
••••••••••/
••••••••Q
•••••••/
••• Heads
•••••/••\••••••••••••1---Sleep; Pr(sleep thru Heads and Tuesday)=(1-Q)/2
••••/•••1-Q•••••••/
••1/2••••\••••••••/
••/•••• Tuesday--0---Waken; Pr(observe Heads and Tuesday)=0
•/
+
•\
••\•••• Monday---1---Waken; Pr(observe Tails and Monday)=1/4
••1/2••••/
••••\••1/2
•••••\••/
••• Tails
•••••••\
•••••••1/2
••••••••••\
••••••• Tuesday--1---Waken; Pr(observe Tails and Tuesday)=1/4
What halfers refuse to recognize, is that whether Beauty is awakened in any specific circumstance is a decision that is part of the process. It is based on the other two random variables, after both – repeat, both – have been determined. The event “Heads and Tuesday” is an event that exists in the sample space, and the decision to not awaken her is made only after that event has occurred. Halfers think they have to force that event into non-existence by making Q=1, when all the experiment requires is that the probability Beauty will observe it is zero. This is the point one thirder argument utilizes, that of Radford Neal’s companion Prince who is always awakened but only asked if Beauty is awakened.
In fact, there is no reason why the probability that it is Monday, given Heads, should be any different than the probability it is Monday, given Tails. So, with Q=1/2, we get that Pr(observe heads)=1/4, Pr(observe anything)=3/4, so Pr(Heads|observe anything)=1/3. QED.
Neq1’s arguments that the thirder positions are wrong are all examples of circular reasoning. He makes some assumption equivalent to saying the answer is 1⁄2, and from that proves the answer is 1⁄2. For example, when he uses “Beauty woken up at least once” as a condition, all his terms are also conditioned on the fact that the rules of the experiment were followed. So when he inserts the completely unconditional “Pr(Heads)=1/2” on the right-hand side of the equation, he really should use Pr(heads|rules followed), which is the unknown we are trying to find. It is then unsurprising that he gets the number he inserted, especially if you consider what using a probability-one event as a condition in Bayes’ Rule means.
Where neq1 claims that Nick Bostrom’s argument is wrong in “Disclosure Process 1,” I suggest he go back and use the values from his probability tree. Her credence of heads is (1/2)/(1/2+1/2/1,000,000). In the second process, it is either (1/2)/(1/2+1/2/7,000,000) of (1/2)/(1/2+1/2/1,000,000,000,000), depending on what “specific day” means.
After tinkering with a solution, and debating with myself how or whether to try it again here, I decided to post a definitive counter-argument to neq1′s article as a comment. It starts with the correct probability tree, which has (at least) five outcomes, not three. But I’ll use the unknown Q for one probability in it:
••••••• Monday---1---Waken; Pr(observe Heads and Monday)=Q/2 ••••••••••/ ••••••••Q •••••••/ ••• Heads •••••/••\••••••••••••1---Sleep; Pr(sleep thru Heads and Tuesday)=(1-Q)/2 ••••/•••1-Q•••••••/ ••1/2••••\••••••••/ ••/•••• Tuesday--0---Waken; Pr(observe Heads and Tuesday)=0 •/ + •\ ••\•••• Monday---1---Waken; Pr(observe Tails and Monday)=1/4 ••1/2••••/ ••••\••1/2 •••••\••/ ••• Tails •••••••\ •••••••1/2 ••••••••••\ ••••••• Tuesday--1---Waken; Pr(observe Tails and Tuesday)=1/4
What halfers refuse to recognize, is that whether Beauty is awakened in any specific circumstance is a decision that is part of the process. It is based on the other two random variables, after both – repeat, both – have been determined. The event “Heads and Tuesday” is an event that exists in the sample space, and the decision to not awaken her is made only after that event has occurred. Halfers think they have to force that event into non-existence by making Q=1, when all the experiment requires is that the probability Beauty will observe it is zero. This is the point one thirder argument utilizes, that of Radford Neal’s companion Prince who is always awakened but only asked if Beauty is awakened.
In fact, there is no reason why the probability that it is Monday, given Heads, should be any different than the probability it is Monday, given Tails. So, with Q=1/2, we get that Pr(observe heads)=1/4, Pr(observe anything)=3/4, so Pr(Heads|observe anything)=1/3. QED.
Neq1’s arguments that the thirder positions are wrong are all examples of circular reasoning. He makes some assumption equivalent to saying the answer is 1⁄2, and from that proves the answer is 1⁄2. For example, when he uses “Beauty woken up at least once” as a condition, all his terms are also conditioned on the fact that the rules of the experiment were followed. So when he inserts the completely unconditional “Pr(Heads)=1/2” on the right-hand side of the equation, he really should use Pr(heads|rules followed), which is the unknown we are trying to find. It is then unsurprising that he gets the number he inserted, especially if you consider what using a probability-one event as a condition in Bayes’ Rule means.
Where neq1 claims that Nick Bostrom’s argument is wrong in “Disclosure Process 1,” I suggest he go back and use the values from his probability tree. Her credence of heads is (1/2)/(1/2+1/2/1,000,000). In the second process, it is either (1/2)/(1/2+1/2/7,000,000) of (1/2)/(1/2+1/2/1,000,000,000,000), depending on what “specific day” means.